Imperfect pattern recognition using the fuzzy measure theory - Archive ouverte HAL
Article Dans Une Revue Intelligent Data Engineering and Automated Learning - IDEAL 2009 Année : 2009

Imperfect pattern recognition using the fuzzy measure theory

Résumé

This paper aims to provide a unified framework to deal with information imperfection and heterogeneity using possibility theory, in addition to information conflict and scarcity using Dempster-Shafer theory in order to classify imperfectly-described medical images. The proposed method is very robust and general. It can be applied without modification to any other database.
Fichier non déposé

Dates et versions

hal-02137001 , version 1 (22-05-2019)

Identifiants

  • HAL Id : hal-02137001 , version 1

Citer

Anas Dahabiah, John Puentes, Basel Solaiman. Imperfect pattern recognition using the fuzzy measure theory. Intelligent Data Engineering and Automated Learning - IDEAL 2009 , 2009, 5788, pp.101 - 108. ⟨hal-02137001⟩
40 Consultations
0 Téléchargements

Partager

More