Generalized Pareto processes for simulating space-time extreme events: an application to precipitation reanalyses - Archive ouverte HAL
Article Dans Une Revue Stochastic Environmental Research and Risk Assessment Année : 2020

Generalized Pareto processes for simulating space-time extreme events: an application to precipitation reanalyses

Résumé

To better manage the risks of destructive natural disasters, impact models can be fed with simulations of extreme scenarios to study the sensitivity to temporal and spatial variability. We propose a semi-parametric stochastic framework that enables simulation of realistic spatio-temporal extreme felds using a moderate number of observed extreme space-time episodes to generate an unlimited number of extreme scenarios of any magnitude. Our framework draws sound theoretical justification from extreme value theory, building on generalized Pareto limit processes. For illustration on hourly gridded precipitation data in Mediterranean France, we calculate risk measures using extreme event simulations for yet unobserved magnitudes.
Fichier principal
Vignette du fichier
PalaciosRodriguezetal2020HAL.pdf (1.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02136681 , version 1 (19-06-2019)
hal-02136681 , version 2 (18-12-2019)
hal-02136681 , version 3 (07-10-2020)

Identifiants

Citer

Fátima Palacios-Rodríguez, Gwladys Toulemonde, Julie Carreau, Thomas Opitz. Generalized Pareto processes for simulating space-time extreme events: an application to precipitation reanalyses. Stochastic Environmental Research and Risk Assessment, 2020, 34, pp.2033-2052. ⟨10.1007/s00477-020-01895-w⟩. ⟨hal-02136681v3⟩
405 Consultations
581 Téléchargements

Altmetric

Partager

More