Uptake across the cell envelope and insertion into the inner membrane of ion channel-forming colicins in E coli
Résumé
Pore-forming colicins exert their lethal effect on E coli through formation of a voltage-dependent channel in the inner (cytoplasmic-membrane) thus destroying the energy potential of sensitive cells. Their mode of action appears to involve 3 steps: i) binding to a specific receptor located in the outer membrane; ii) translocation across this membrane; iii) insertion into the inner membrane. Colicin A has been used as a prototype of pore-forming colicins. In this review, the 3 functional domains of colicin A respectively involved in receptor binding, translocation and pore formation, are defined. The components of sensitive cells implicated in colicin uptake and their interactions with the various colicin A domains are described. The 3-dimensional structure of the pore-forming domain of colicin A has been determined recently. This structure suggests a model of insertion into the cytoplasmic membrane which is supported by model membrane studies. The role of the membrane potential in channel functioning is also discussed.