Geocaching-inspired resilient path planning for drone swarms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Geocaching-inspired resilient path planning for drone swarms

Résumé

A path planning algorithm for drone swarms is presented. From the outset, none of the drones knows the path and final destination. Together, they collectively determine and unravel step-by-step the waypoints and final destination, resolving a localization problem at each step. It is a shared-information path planning algorithm. The algorithm is fault-tolerant and resilient to drones falling victim of attacks to their positioning system. It is shown that correctly functioning drones navigate the path provided that the number of faulty drones is less than $\frac{n-d}{2}$, where $n$ is the total number of drones and $d$, equal to two or three, is the dimension of the space navigated by the drones. We validate the algorithm with appropriate simulations, implemented over OMNeT++ and GNSSim, which allow building network simulations including GPS attacks (e.g., jamming and spoofing attacks). The OMNeT++ models and the GNSSim functions are linked together, to validate our work.
Fichier principal
Vignette du fichier
preprint-misarn2019.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02127604 , version 1 (13-05-2019)

Identifiants

Citer

Michel Barbeau, Joaquin Garcia-Alfaro, Evangelos Kranakis. Geocaching-inspired resilient path planning for drone swarms. MISARN 2019: Mission-Oriented Wireless Sensor, UAV and Robot Networking, Apr 2019, Paris, France. pp.620 - 625, ⟨10.1109/INFCOMW.2019.8845318⟩. ⟨hal-02127604⟩
125 Consultations
326 Téléchargements

Altmetric

Partager

More