Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nanoscale Horizons Année : 2019

Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis

Albertus D Handoko
  • Fonction : Auteur
Stephan N. Steinmann
Zhi Wei Seh

Résumé

Two-dimensional transition metal carbides and nitrides (MXenes) have made significant impact on sustainable energy research in the fields of energy storage and conversion. Unlike short-term energy storage strategies (e.g. batteries and supercapacitors), the catalytic conversion of simple molecules to value-added chemicals using renewable energy represents a more long-term solution to the world's energy crisis. Significant advances in density functional theory and low-cost computing in the past decade have enabled the generation of reliable materials data from fundamental physics equations. The paradigm shift towards theory-guided materials design is expected to enhance the catalyst discovery and development process by providing rational guidance to screen viable MXene catalysts more rapidly than an experimental-only approach. In this review, we aim to provide a critical appraisal of the latest theoretical and experimental work on MXenes in the fields of electro-and photocatalytic energy conversion, including relevant reactions involving hydrogen, oxygen, carbon dioxide and nitrogen molecules. In the process, we will also be pointing out current limitations in theoretical models, existing scientific gaps and future research directions for this field. 2
Fichier principal
Vignette du fichier
Two-Dimensional MXenes in Electro- and Photocatalysis_01Apr2019.pdf (4.95 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02125540 , version 1 (10-05-2019)

Identifiants

Citer

Albertus D Handoko, Stephan N. Steinmann, Zhi Wei Seh. Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horizons, 2019, ⟨10.1039/C9NH00100J⟩. ⟨hal-02125540⟩
79 Consultations
787 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More