Look and Feel What and How Recurrent Self-Organizing Maps Learn - Archive ouverte HAL
Chapitre D'ouvrage Année : 2020

Look and Feel What and How Recurrent Self-Organizing Maps Learn

Résumé

This paper introduces representations and measurements for revealing the inner self-organization that occurs in a 1D recurrent self-organizing map. Experiments show the incredible richness and robustness of an extremely simple architecture when it extracts hidden states of the HMM that feeds it with ambiguous and noisy inputs.
Fichier principal
Vignette du fichier
wsom-19-Fix-FrezzaBuet.pdf (1.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02120117 , version 1 (17-03-2020)

Identifiants

Citer

Jérémy Fix, Hervé Frezza-Buet. Look and Feel What and How Recurrent Self-Organizing Maps Learn. Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, WSOM 19, 976, pp.3-12, 2020, Advances in Intelligent Systems and Computing, 978-3-030-19641-7. ⟨10.1007/978-3-030-19642-4_1⟩. ⟨hal-02120117⟩
289 Consultations
297 Téléchargements

Altmetric

Partager

More