A Proximal Interior Point Algorithm with Applications to Image Processing - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2019

A Proximal Interior Point Algorithm with Applications to Image Processing

Résumé

In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nons-mooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying values of a logarithmic barrier parameter. This inner minimization is performed thanks to a finite number of subiterations of a variable metric forward-backward method employing a line search strategy. The convergence of this latter step as well as the convergence the global method itself are analyzed. The numerical efficiency of the proposed approach is demonstrated in two image processing applications.
Fichier principal
Vignette du fichier
chouzenouxPIPA2019.pdf (2.42 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02120005 , version 1 (06-05-2019)
hal-02120005 , version 2 (21-01-2020)

Identifiants

  • HAL Id : hal-02120005 , version 1

Citer

Emilie Chouzenoux, Marie-Caroline Corbineau, Jean-Christophe Pesquet. A Proximal Interior Point Algorithm with Applications to Image Processing. Journal of Mathematical Imaging and Vision, In press. ⟨hal-02120005v1⟩
443 Consultations
627 Téléchargements

Partager

More