Approximating robust bin-packing with budgeted uncertainty - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Approximating robust bin-packing with budgeted uncertainty

Aniket Basu Roy
  • Fonction : Auteur
  • PersonId : 1046693
Marin Bougeret
Noam Goldberg
  • Fonction : Auteur
  • PersonId : 1046694
Michael Poss

Résumé

We consider robust variants of the bin-packing problem where the sizes of the items can take any value in a given uncertainty set U ⊆ × n i=1 [ai, ai + ˆ ai], where a ∈ [0, 1] n represents the nominal sizes of the items andâandˆandâ ∈ [0, 1] n their possible deviations. We consider more specifically two uncertainty sets previously studied in the literature. The first set, denoted U Γ , contains scenarios in which at most Γ ∈ N items deviate, each of them reaching its peak value ai + ˆ ai, while each other item has its nominal value ai. The second set, denoted U Ω , bounds by Ω ∈ [0, 1] the total amount of deviation in each scenario. We show that a variant of the next-fit algorithm provides a 2-approximation for model U Ω , and a 2(Γ +1) approximation for model U Γ (which can be improved to 2 approximation for Γ = 1). This motivates the question of the existence of a constant ratio approximation algorithm for the U Γ model. Our main result is to answer positively to this question by providing a 4.5 approximation for U Γ model based on dynamic programming.
Fichier principal
Vignette du fichier
WADS19_full_version (1).pdf (398.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02119351 , version 1 (03-05-2019)
hal-02119351 , version 2 (11-02-2020)
hal-02119351 , version 3 (30-10-2020)

Identifiants

  • HAL Id : hal-02119351 , version 1

Citer

Aniket Basu Roy, Marin Bougeret, Noam Goldberg, Michael Poss. Approximating robust bin-packing with budgeted uncertainty. 2019. ⟨hal-02119351v1⟩
312 Consultations
661 Téléchargements

Partager

More