An efficient association rule mining algorithm for classification - Archive ouverte HAL
Chapitre D'ouvrage Année : 2008

An efficient association rule mining algorithm for classification

Résumé

In this paper, we propose a new Association Rule Mining algorithm for Classification (ARMC). Our algorithm extracts the set of rules, specific to each class, using a fuzzy approach to select the items and does not require the user to provide thresholds. ARMC is experimentaly evaluated and compared to state of the art classification algorithms, namely CBA, PART and RIPPER. Results of experiments on standard UCI benchmarks show that our algorithm outperforms the above mentionned approaches in terms of mean accuracy.
Fichier principal
Vignette du fichier
Zemirline2008.pdf (518.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02118956 , version 1 (15-05-2019)

Identifiants

  • HAL Id : hal-02118956 , version 1

Citer

Abdelhamid Zemirline, Laurent Lecornu, Basel Solaiman, Ahmed Ech-Cherif. An efficient association rule mining algorithm for classification. ICAISC : Artificial Intelligence and Soft Computing, June 22-26, Zakopane, Poland, 5097, Springer Berlin, pp.717 - 728, 2008, Lecture notes in computer science, 978-3-540-69572-1. ⟨hal-02118956⟩
45 Consultations
186 Téléchargements

Partager

More