CCG Supertagging Using Morphological and Dependency Syntax Information - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

CCG Supertagging Using Morphological and Dependency Syntax Information

Résumé

After presenting a new CCG supertagging algorithm based on morphological and dependency syntax information, we use this algorithm to create a CCG French Tree Bank corpus (20,261 sentences) based on the FTB corpus by Abeillé et al. We then use this corpus, as well as the Groningen Tree Bank corpus for the English language, to train a new BiLSTM+CRF neural architecture that uses (a) morphosyntactic input features and (b) feature correlations as input features. We show experimentally that for an inflected language like French, dependency syntax information allows significant improvement of the accuracy of the CCG supertagging task, when using deep learning techniques.
Fichier principal
Vignette du fichier
CCG_Supertagging (2).pdf (328.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02110790 , version 1 (26-04-2019)

Identifiants

Citer

Luyện Ngọc Lê, Yannis Haralambous. CCG Supertagging Using Morphological and Dependency Syntax Information. International Conference on Computational Linguistics and Intelligent Text Processing, Apr 2019, La Rochelle, France. pp.608-621, ⟨10.1007/978-3-031-24337-0_43⟩. ⟨hal-02110790⟩
214 Consultations
348 Téléchargements

Altmetric

Partager

More