Casimir-Polder force fluctuations as spatial probes of dissipation in metals
Résumé
We study the spatial fluctuations of the Casimir-Polder force experienced by an atom or a small sphere moved above a metallic plate at fixed separation distance. We demonstrate that unlike the mean force, the magnitude of these fluctuations crucially relies on the relaxation of conduction electron in the metallic bulk, and even achieves values that differ by orders of magnitude depending on the amount of dissipation. We also discover that fluctuations suffer a spectacular decrease at large distances in the case of nonzero temperature.