Postponement of $\mathsf {raa}$ and Glivenko’s Theorem, Revisited - Archive ouverte HAL
Article Dans Une Revue Studia Logica Année : 2019

Postponement of $\mathsf {raa}$ and Glivenko’s Theorem, Revisited

Résumé

We study how to postpone the application of the reductio ad absurdum rule (raa) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of raa, which induces a negative translation (a variant of Kuroda’s one) from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.

Domaines

Philosophie
Fichier non déposé

Dates et versions

hal-02110501 , version 1 (25-04-2019)

Identifiants

Citer

Giulio Guerrieri, Alberto Naibo. Postponement of $\mathsf {raa}$ and Glivenko’s Theorem, Revisited. Studia Logica, 2019, 107 (1), pp.109-144. ⟨10.1007/s11225-017-9781-5⟩. ⟨hal-02110501⟩
117 Consultations
0 Téléchargements

Altmetric

Partager

More