Machine Translation on a parallel Code-Switched Corpus - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Machine Translation on a parallel Code-Switched Corpus

Résumé

Code-switching (CS) is the phenomenon that occurs when a speaker alternates between two or more languages within an utterance or discourse. In this work, we investigate the existence of code-switching in formal text, namely proceedings of multilingual institutions. Our study is carried out on the Arabic-English code-mixing in a parallel corpus extracted from official documents of United Nations. We build a parallel code-switched corpus with two reference translations one in pure Arabic and the other in pure English. We also carry out a human evaluation of this resource in the aim to use it to evaluate the translation of code-switched documents. To the best of our knowledge, this kind of corpora does not exist. The one we propose is unique. This paper examines several methods to translate code-switched corpus: conventional statistical machine translation, the end-to-end neural machine translation and multitask-learning.
Fichier principal
Vignette du fichier
main.pdf (191.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02106010 , version 1 (22-04-2019)

Identifiants

  • HAL Id : hal-02106010 , version 1

Citer

Mohamed Menacer, David Langlois, Denis Jouvet, Dominique Fohr, Odile Mella, et al.. Machine Translation on a parallel Code-Switched Corpus. Canadian AI 2019 - 32nd Conference on Canadian Artificial Intelligence, May 2019, Ontario, Canada. ⟨hal-02106010⟩
265 Consultations
761 Téléchargements

Partager

More