Valuations and Plurisubharmonic Singularities - Archive ouverte HAL
Article Dans Une Revue Publications of the Research Institute for Mathematical Sciences Année : 2008

Valuations and Plurisubharmonic Singularities

Résumé

We extend to higher dimensions some of the valuative analysis of singularities of plurisubharmonic (psh) functions developed by the first two authors. Following Kontsevich and Soibelman we describe the geometry of the space V of all normalized valuations on C[x1,. .. , xn] centered at the origin. It is a union of simplices naturally endowed with an affine structure. Using relative positivity properties of divisors living on modifications of C n above the origin, we define formal psh functions on V, designed to be analogues of the usual psh functions. For bounded formal psh functions on V, we define a mixed Monge-Ampère operator which reflects the intersection theory of divisors above the origin of C n. This operator associates to any (n − 1)-tuple of formal psh functions a positive measure of finite mass on V. Next, we show that the collection of Lelong numbers of a given germ u of a psh function at all infinitely near points induces a formal psh functionûfunctionˆfunctionû on V. When ϕ is a psh Hölder weight in the sense of Demailly, the generalized Lelong number νϕ(u) equals the integral ofûofˆofû against the Monge-Ampère measure ofˆϕofˆ ofˆϕ. In particular, any generalized Lelong number is an average of valuations. We also show how to compute the multiplier ideal of u and the relative type of u with respect to ϕ in the sense of Rashkovskii, in terms ofûofˆofû andˆϕandˆ andˆϕ.
Fichier principal
Vignette du fichier
0702487.pdf (360.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02105205 , version 1 (20-04-2019)

Identifiants

Citer

Sébastien Boucksom, Charles Favre, Mattias Jonsson. Valuations and Plurisubharmonic Singularities. Publications of the Research Institute for Mathematical Sciences, 2008, 44 (2), pp.449-494. ⟨10.2977/prims/1210167334⟩. ⟨hal-02105205⟩
72 Consultations
92 Téléchargements

Altmetric

Partager

More