Degree growth of meromorphic surface maps
Résumé
We study the degree growth of iterates of meromorphic self-maps of compact Kähler surfaces. Using cohomology classes on the Riemann-Zariski space we show that the degrees grow similarly to those of mappings that are algebraically stable on some bimeromorphic model.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...