Deep Learning for Classification of Hyperspectral Data: A Comparative Review - Archive ouverte HAL
Article Dans Une Revue IEEE geoscience and remote sensing magazine Année : 2019

Deep Learning for Classification of Hyperspectral Data: A Comparative Review

Apprentissage profond pour la classification de données hyperspectrales : une revue comparative

Résumé

In recent years, deep learning techniques revolutionized the way remote sensing data are processed. Classification of hyperspectral data is no exception to the rule, but has intrinsic specificities which make application of deep learning less straightforward than with other optical data. This article presents a state of the art of previous machine learning approaches, reviews the various deep learning approaches currently proposed for hyperspectral classification, and identifies the problems and difficulties which arise to implement deep neural networks for this task. In particular, the issues of spatial and spectral resolution, data volume, and transfer of models from multimedia images to hyperspectral data are addressed. Additionally, a comparative study of various families of network architectures is provided and a software toolbox is publicly released to allow experimenting with these methods. 1 This article is intended for both data scientists with interest in hyperspectral data and remote sensing experts eager to apply deep learning techniques to their own dataset.
Fichier principal
Vignette du fichier
DL4HSI.pdf (1.41 Mo) Télécharger le fichier
IEEEtran.cls (275.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02104998 , version 1 (19-04-2019)

Identifiants

Citer

Nicolas Audebert, Bertrand Le Saux, Sébastien Lefèvre. Deep Learning for Classification of Hyperspectral Data: A Comparative Review. IEEE geoscience and remote sensing magazine, 2019, 7 (2), pp.159-173. ⟨10.1109/MGRS.2019.2912563⟩. ⟨hal-02104998⟩
672 Consultations
2669 Téléchargements

Altmetric

Partager

More