Exponential ergodicity for diffusions with jumps driven by a Hawkes process - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Exponential ergodicity for diffusions with jumps driven by a Hawkes process

Résumé

In this paper, we introduce a new class of processes which are diffusions with jumps driven by a multivariate nonlinear Hawkes process. Our goal is to study their long-time behavior. In the case of exponential memory kernels for the underlying Hawkes process we establish conditions for the positive Harris recurrence of the couple (X, Y), where X denotes the diffusion process and Y the piecewise deterministic Markov process (PDMP) defining the stochastic intensity of the driving Hawkes. As a direct consequence of the Harris recurrence, we obtain the ergodic theorem for X. Furthermore, we provide sufficient conditions under which the process is exponentially β−mixing.
Fichier principal
Vignette du fichier
article-proba-18-07-2019-revised-version.pdf (462.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02094514 , version 1 (10-04-2019)
hal-02094514 , version 2 (18-07-2019)
hal-02094514 , version 3 (20-12-2019)

Identifiants

Citer

Charlotte Dion, Sarah Lemler, Eva Löcherbach. Exponential ergodicity for diffusions with jumps driven by a Hawkes process. 2019. ⟨hal-02094514v2⟩
303 Consultations
294 Téléchargements

Altmetric

Partager

More