Macrocanonical Models for Texture Synthesis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Macrocanonical Models for Texture Synthesis

Bruno Galerne
Arthur Leclaire

Résumé

In this article we consider macrocanonical models for texture synthesis. In these models samples are generated given an input texture image and a set of features which should be matched in expectation. It is known that if the images are quantized, macrocanonical models are given by Gibbs measures, using the maximum entropy principle. We study conditions under which this result extends to real-valued images. If these conditions hold, finding a macrocanonical model amounts to minimizing a convex function and sampling from an associated Gibbs measure. We analyze an algorithm which alternates between sampling and minimizing. We present experiments with neural network features and study the drawbacks and advantages of using this sampling scheme.
Fichier principal
Vignette du fichier
main.pdf (26.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02093364 , version 1 (08-04-2019)

Identifiants

Citer

Valentin de Bortoli, Agnès Desolneux, Bruno Galerne, Arthur Leclaire. Macrocanonical Models for Texture Synthesis. Scale Space and Variational Methods in Computer Vision. SSVM 2019, Jun 2019, Hofgeismar, Germany. ⟨10.1007/978-3-030-22368-7_2⟩. ⟨hal-02093364⟩
173 Consultations
93 Téléchargements

Altmetric

Partager

More