Variational Reflectance Estimation from Multi-view Images - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2018

Variational Reflectance Estimation from Multi-view Images

Résumé

We tackle the problem of reectance estimation from a set of multi-view images, assuming known geometry. The approach we put forward turns the input images into reectance maps, through a robust vari-ational method. The variational model comprises an image-driven delity term and a term which enforces consistency of the reectance estimates with respect to each view. If illumination is xed across the views, then reectance estimation remains under-constrained: a regularization term, which ensures piecewise-smoothness of the reectance, is thus used. Reectance is pa-rameterized in the image domain, rather than on the surface, which makes the numerical solution much easier , by resorting to an alternating majorization-minimization approach. Experiments on both synthetic and real-world datasets are carried out to validate the proposed strategy.
Fichier principal
Vignette du fichier
paper.pdf (6.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02087984 , version 1 (02-04-2019)

Identifiants

Citer

Jean Mélou, Yvain Quéau, Jean-Denis Durou, Fabien Castan, Daniel Cremers. Variational Reflectance Estimation from Multi-view Images. Journal of Mathematical Imaging and Vision, 2018, 60 (9), pp.1527-1546. ⟨10.1007/s10851-018-0809-x⟩. ⟨hal-02087984⟩
109 Consultations
56 Téléchargements

Altmetric

Partager

More