Multidimensional Outlier Detection in Interaction Data: Application to Political Communication on Twitter - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Multidimensional Outlier Detection in Interaction Data: Application to Political Communication on Twitter

Résumé

We introduce a method which aims at getting a better understanding of how millions of interactions may result in global events. Given a set of dimensions and a context, we find different types of outliers: a user during a given hour which is abnormal compared to its usual behaviour, a relationship between two users which is abnormal compared to all other relationships, etc. We apply our method on a set of retweets related to the 2017 French presidential election and show that one can build interesting insights regarding political organization on Twitter.
Fichier principal
Vignette du fichier
article_twitter_short_site.pdf (372.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02085401 , version 1 (30-03-2019)

Identifiants

Citer

Audrey Wilmet, Robin Lamarche-Perrin. Multidimensional Outlier Detection in Interaction Data: Application to Political Communication on Twitter. International Conference on Complex Networks, Mar 2019, Tarragona, Spain. pp.147-155, ⟨10.1007/978-3-030-14459-3_12⟩. ⟨hal-02085401⟩
136 Consultations
143 Téléchargements

Altmetric

Partager

More