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Abstract

We introduce a method which aims at getting a better understanding of how millions
of interactions may result in global events. Given a set of dimensions and a context, we
find different types of outliers: a user during a given hour which is abnormal compared
to its usual behaviour, a relationship between two users which is abnormal compared
to all other relationships, etc. We apply our method on a set of retweets related to
the 2017 French presidential election and show that one can build interesting insights
regarding political organization on Twitter.

1 Introduction

Within Twitter, users can post information via tweets as well as spread information by
retweeting tweets of other users. This dissemination of information from a variety of per-
spectives may lead to global events which affect users’ opinions.
In this paper, we introduce a method which aims at getting a better understanding of how
these interactions are organised. To this end, we look for outliers in interaction data formed
from a set of retweets. For instance, an event in a data stream is an outlier: it can be view
as a statistical deviation of the total number of retweets at a given point in time. More gen-
erally, outliers, depending on which dimensions define them, highlight instants, users, users
during given periods, or interactions for which the retweeting process behaves unusually.
Therefore, they constitute important information regarding interactions’ organisation.
We consider an interaction to be a triplet (s, a, t) meaning that user s, called the spreader,
has retweeted a tweet of user a, called the author, at time t. We model the set of interactions
as a data cube with three dimensions: spreaders, authors and time. This representation en-
ables us to access to local information, as the number of retweets between two users during
a specific hour, as well as more global and aggregated information, as for instance the total
number of retweets during a given hour. In the next step, we combine and compare theses
different quantities in order to find outliers according to different contexts. This multidi-
mensional analysis gives us insight into the possible reasons why some events emerge more
than others and, in particular, whether they are global phenomena or, whether they origi-
nate from specific actors only.
The paper is organized as follows. First, we review the related work about outlier detection
within Twitter in Section 2. In Section 3, we introduce the modelling of interactions as a
data cube. In the following, we describe our method in Section 4 and apply it to a set of
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retweets related to the 2017 French presidential election in Section 5. Finally, Section 6
concludes the paper with future work.

2 Related Work

The problem of outlier detection on Twitter has been approached in various ways depending
on how outliers are defined. Some researchers consider outliers as real-world events taking
place at a given place and at a given moment. For example, Sakaki et al. [14] and Bruns et
al. [2] trace specific keywords attributed to an event and find such outliers by monitoring
temporal changes in word usage within tweets. In other approaches, authors infer, from
timestamps, geo-localizations and tweet contents, a similarity between each pair of tweet
and find event into clusters of similar tweets, see for instance the works of Dong et al. [6],
Li et al. [12] and Walther et al. [18]. Other researchers, instead, consider outliers as users
with abnormal behaviours according to different criteria. For instance, Varol et al. [17]
detect bots by means of a supervised machine learning technique. The work of Stieglitz et
al. [16] focus on influential users by investigating the correlation between the vocabulary
they use in tweets and the number of time they are retweeted. Ribeiro et al. [13], on the
other hand, detect hateful users by means of a lexicon-based method. Finally, other works
aim at finding privileged relationships between users. Among those, the work of Wong et
al. [19] apply it to political leaning by combining an analysis of the number of retweets
between two users with a sentiment analysis on the retweeted tweets.
With our approach, we want to treat these different types of outliers in a unified way as
well as consider different perspectives in the way outliers are considered abnormal. Hence,
not only we consider different entities as abnormal users; abnormal relationships; abnormal
behaviours of users during specific hours, etc., but also different contexts in which outliers
are defined. Thus, an abnormal user may be abnormal during a given hour compared to
the way it usually behaves during other hours, but also compared to the behaviour of all
other users during the same hour. In this way, our framework aims to give a more complete
picture of how users act, interact, and are organized along time in a way similar to what
Grasland et al. [10] do in the case of media coverage in newspapers.
In practice, instead of characterizing and detecting outliers using tweets’ content, as a lot
of current approaches do, included those set out above, we focus on interactions’ volume
and structure. Indeed, text-mining techniques, although providing meaningful results, face
challenges as the ambiguity of the language and the fact that resultant models are language-
dependent and topic-dependent. Other authors point into this direction, see for instance
the works of Chavoshi et al. [4] and Chierichetti et al. [5], which focus on volume-based
features as the number of tweets and retweets, as well as the works of Song et al. [15] and
Bild et al. [1] which focus instead on graph-based techniques.

3 Formalism

We denote the set of interactions by a set E of triplets such that (s, a, t) ∈ E indicates that
s, called the spreader, has retweeted a, called the author, at time t. We model this set as
a data cube. In this section, we formally define this tool as well as the possible operations
we can apply on it to explore data in all its dimensions and to have access to more or less
aggregated information.
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3.1 Data Cube Definition

A data cube is a general term used to refer to a multi-dimensional array of values [11]. Given
n dimensions characterized by n sets X1, ..., Xn, we can built N =

∑n
i=0

(
n

n−i
)

data cubes,

each representing a different degree of aggregation of data. The quantity
(

n
n−i
)

corresponds
to the number of data cubes of dimension n − i in which i dimensions are aggregated.
Within this set of data cubes, we call the base cuboid the cube which has the lowest degree
of aggregation. We denote it Cn(X, f) where X = X1× ...×Xn is the Cartesian product of
the n sets X1, ..., Xn, and f a feature which maps each n-uplet to a value:

f : X −→ W

(x1, ..., xn) 7−→ f(x1, ..., xn)

where W is the value space of the feature. In the following, n-uplets are also called cells of
the cube and denoted c such that c = (x1, ..., xn) ∈ X.

Dimensions are the entities with respect to which we want to study data. In this paper,
the three dimensions we consider are: the spreaders, denoted S, the authors, denoted A, and
time, denoted T . In addition, we can organise elements of a dimension into sub-dimensions.
For instance, the temporal dimension can be organised depending on temporal granularity.
In our case, we divide it into the two sub-dimensions days, denoted D, and hours, denoted
H, such that t = (d, h) with (d, h) ∈ D ×H.

The feature is a numerical measure which provides the quantities according to which we
want to analyse relationships between dimensions. Here we consider
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Figure 1: Base Cuboid C4(S ×A×D ×H, v)

the quantity of interaction, denoted v. It
gives the number of retweets for any com-
bination of the three dimensions. In the
base cuboid, v(s, a, (d, h)) gives the num-
ber of times s retweeted a during hour h
of day d:

v : S ×A×D ×H −→ N
For instance, in Figure 1, the gray cell
indicates that s3 retweeted a4 40 times
on day d1 at hour h1. For the sake of
clarity, in the following we will refer to

(s, a, (d, h)) as (s, a, d, h).

3.2 Data Cube Operations

We can explore the data through three operations called aggregation, expansion and filtering.

Aggregation is the operation which consists in seeing information at a more global level.
Given a data cube Cn(X, f), the aggregation operation along the dimension Xi leads to a
data cube of dimension n − 1, Cn−1(X ′, f) where X ′ = X1 × ... ×Xi−1 ×Xi+1 × ... ×Xn.
Formally, a dimensionXi is aggregated by adding up feature’s values for all elements xi ∈ Xi.
We indicate by a “ · ” a dimension which is aggregated with respect to f . Hence, Cn−1(X ′, f)
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is constituted of n−1-dimensional cells denoted c′ = (x1, ..., xi−1, ·, xi+1, ..., xn) ∈ X ′ where

f(c′) =
∑

xi∈Xi

f(c) .

For instance, one can aggregate along the hour dimension such that
v(s, a, d, ·) =

∑
h∈H v(s, a, d, h) gives the total number of time s retweeted a dur-

Base cuboid

Aggregation
on spreaders

Expansion
on time

Filtering
on spreaders

(spreaders, authors, time)

(spreaders, time) (spreaders, authors) (authors, time)

(spreaders) (time) (authors)

Figure 2: Aggregation, expansion and filter-
ing on the base cuboid.

ing day d.

Expansion is the reverse operation which
consists in seeing information at a more lo-
cal level by introducing additional dimensions.
Given a data cube Cn(X, f), the expansion op-
eration on the dimension Xn+1 leads to a data
cube of dimension n + 1, Cn+1(X ′, f) where
X ′ = X ×Xn+1.

Filtering is the operation which con-
sists in focusing on one specific subset
of data. Given a data cube Cn(X, f),
the filtering operation leads to a sub-
cube Cn(X ′, f) by selecting subsets of el-
ements within one or more dimensions
such that X ′ = X ′1 × ... × X ′n with
X ′1 ⊆ X1, ..., X

′
n ⊆ Xn.

Figure 2 shows the set of more or less aggregated data cubes considering the three dimen-
sions: spreaders, authors and time. It illustrates how to navigate from one to another thanks
to the three previously described operations.

4 Method

In this paper, our goal is to find abnormal cells, i.e., n-uplets x ∈ X for which the observation
f(x) is abnormal. As an observation’s abnormality is relative to the elements to which it is
compared [3], a given cell may be abnormal or not depending on the context. More precisely,
the context is the set of observations which are taken into account in order to assess the
abnormality of a cell, we denote it O = {o(x) | x ∈ X}. In this section, we design a set of
steps in order to shape various contexts and show that it leads to a deeper exploration of
interactions compared to an elementary outlier detection.

4.1 Basic Context

When seeking abnormal cells within a data cube Cn(X, f), the most elementary context we
can consider is the set of raw observations O = {f(x) | x ∈ X}. To find outliers, we infer
the normal behaviour of observations o ∈ O and deduce abnormal behaviours which deviate
from it.

4



50 retweets

a1
#

a2
a3

100 retweets

a1
#

a2
a3

...
20 retweets

a1
#

a2
a3

400 retweets

a1
#

a2
a3

600 retweets

a1
#

a2 a3

...

10, 000 retweets

a1
# a2

a3

a1
#

a2
a3

a1
#

a2
a3

d1 d2 dn Expected

0h

...

19h

# = influential authors Other

Figure 3: Different con-
texts lead to different out-
liers - Proportions p(a, d, h)
are represented as pie charts.
For instance, on d1 at 19h, the
influential author a1 has been
retweeted 200 times which
represents 50% of all retweets
exchanged during this hour.

Example: In data cube C3(A×D ×H, v), an abnormal cell c∗ = (a∗, d∗, h∗) indicates that
during the hour h∗ of day d∗, the author a∗ has been retweeted an abnormal number of times
compared to the number of times most authors are retweeted during one hour (independently
of the hour of the day and of the day under consideration).

4.2 Aggregated Context

The first way in which the context can be shaped is to observe quantities relatively to more
aggregated quantities. Resulting contexts are called aggregated contexts. Contrarily to the
basic context, building an aggregated context requires two data cubes: the cube under study,
Cn(X, f) and the comparison data cube, Cm(X ′, f), which is used to provide comparative
external elements to the first. For the context to be relevant, Cm(X ′, f) must derive from
the aggregation of Cn(X, f) on one or more dimensions, hence, n > m and X = X ′ × Y
where Y is the Cartesian product of the aggregated dimensions. We proceed as follows. For
each cell x = (x′, y) ∈ X such that x′ ∈ X ′ and y ∈ Y , we measure the proportion, p(x),
between the quantity f(x′, y), within Cn(X, f), and the quantity f(x′), within Cm(X ′, f),

p(x) =
f(x′, y)

f(x′)
.

Then, as previously, we infer the normal behaviour of the set O = {p(x) | x ∈ X}, and
deduce abnormal behaviours which deviate from it.

Example: In data cube C3(A×D×H, v), relatively to data cube C2(D×H, v), an abnormal
cell c∗ = (a∗, d∗, h∗) indicates that the proportion of retweets received by author a∗ among
all retweets of hour h∗ of day d∗,

p(a∗, d∗, h∗) =
v(·, a∗, d∗, h∗)
v(·, ·, d∗, h∗)

is abnormal compared to most proportions of retweets received by authors during one hour
(independently of the hour of the day and of the day under consideration). Figure 3 illus-
trates this situation with triplet (a1, d1, 19h).

4.3 Expected Context

The principle of the expected context is similar, except that this time, we compare a value
to its expected value. For example, consider an author a∗ who presents a morning show:
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a∗ has a proportion of retweets fluctuating between 10% and 15% every morning from 8h
to 10h. Outside this time slot, its proportions do not exceed 1%. On day d∗ at 19h, we
observe a proportion of 15%. With the aggregated context, we compare the proportions of
retweets p(a, d, h) for all triplets indifferently of the time of day. In this context, (a∗, d∗, 19h)
is considered as normal. However, by comparing the proportion of 15% to the expected pro-
portion at 19h in the expected context, (a∗, d∗, 19h) is marked as an outlier.

The expected value, denoted fexp, is obtained by averaging f on one or more of its
variables. Formally, let Y be the Cartesian product of the averaged dimensions such that
X = X ′ × Y . For each x′ ∈ X ′, we have

fexp(x′) =
1

|Y |
∑
y∈Y

f(x′, y) .

Subsequently, for each cell x = (x′, y) ∈ X such that x′ ∈ X ′ and y ∈ Y , we measure a
distance l(x) between f(x′, y), within Cn(X, f), and its expected value fexp(x′). Then, we
infer the normal behaviour of the set O = {l(x) | x ∈ X} and deduce abnormal behaviours
which deviate from it. Note that, as discussed in the example above, this context can be
combined with the aggregated context.

When the feature consists in counting the number of interactions of cell x, as v(x), it can be
modelled by a Poisson counting process of intensity fexp [10]. In this case, the distance l(x)
can be obtained as follows. If f(x) ≥ fexp(x′), we calculate the probability of observing a
value f(x) or more, knowing that we should have observed fexp on average. We denote this
probability q(Pois(fexp) ≥ f(x)). By symmetry, we obtain O = {l(x) | x ∈ X} such that

l(x) =

{
− log(q(Pois(fexp) ≥ f(x)) if f(x) ≥ fexp,

log(q(Pois(fexp) < f(x)) if f(x) < fexp.
(1)

The logarithm is calculated for convenience in order to have a better range of value. Defined
as such, l(x) allows us to take into account the significance, to which a value deviates from
its expected value: if it is is very unlikely, namely very high (resp. low) given fexp, we will
observe high positive (resp. negative) distances. On the contrary, if it is very likely, l(x) will
be close to 0. The Poisson counting process is the most simple and frequently used counting
process, however, other choices can be made, see for instance the book of Fleming et al. [7].

Example: In data cube C3(A×D ×H, v), relatively to data cube C2(D ×H, v), an abnor-
mal cell c∗ = (a∗, d∗, h∗) indicates that the distance l(a∗, d∗, h∗) between the proportion of
retweets received by author a∗ among all retweets of hour h∗ of day d∗,

p(a∗, d∗, h∗) =
v(·, a∗, d∗, h∗)
v(·, ·, d∗, h∗)

and its expected proportion pexp during this specific hour of the day h∗,

pexp(a∗, h∗) =
1

|D|
∑
d∈D

p(a∗, d, h∗) ,

is abnormal compared to most distances observed for other triplets (a, d, h) ∈ A × D × H.
Figure 3 illustrates this situation with triplet (a3, d2, 0h).
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4.4 Restrained Context

Restrained context is another way to focus on local patterns. It consists in filtering observa-
tions to only compare a subset of the cells. First, we gather observations on the restrained
set of cells X ′ ⊂ X; next, we infer their normal behaviour; finally, we deduce abnormal
behaviours which deviate from it.

Example: In data cube C3(A × D ×H, v), relatively to data cube C2(D ×H, v), and con-
sidering the set of triplets (a, d, h) ∈ Ia

c × D × H where Ia
c is the set of non-influential

authors, an abnormal cell c∗ = (a∗, d∗, h∗) indicates that the proportion of retweets received
by author a∗ among all retweets of hour h∗ of day d∗,

p(a∗, d∗, h∗) =
v(·, a∗, d∗, h∗)
v(·, ·, d∗, h∗)

is abnormal compared to most proportions of retweets received by non-influential authors
during one hour (independently of the hour of the day and of the day under consideration).
This is what we observe with triplet (a3, d2, 0h) in Figure 3.

Taken separately, each of these contexts allows to study interactions under a different
perspective. In our method, we combine together different contexts which leads to numerous
kinds of outliers.

5 Experiments

In this section, we apply our method on retweets related to political communication during
the 2017 French presidential elections. We use a subset of the dataset collected by Gaumont
et al. as part of the project Politoscope [8]. It contains politics-related retweets during
the month of August 2016. Formally, our dataset consists in the set of retweets E, such
that (s, a, t) ∈ E means that s retweeted a at time t, where either the corresponding tweet
contains politics-related keywords, or a belongs to a set of 3, 700 French political actors listed
by the Politoscope project. It contains 1, 142, 004 retweets and involves 211, 155 different
users. We present a case study, which, based on events found in the temporal dimension,
proposes possible causes of their emergence by exploring the author dimension.

5.1 Events

We define an event to be an abnormal hour (d∗, h∗) ∈ D×H. Figure 4 shows the evolution
of the number of retweets per hour1. We can distinguish three distinct behaviours:
– nocturnal hours, characterized by a number of retweets fluctuating around 350,
– daytime from the 1st of August to the 24th, characterized by a higher number of retweets
fluctuating around 1, 600,
– daytime from 24th of August to the 31th, characterized by a global increase in the number
of retweets which fluctuates around 2, 900.

Based on such observations, if we look for abnormal hours in the basic context, i.e. for
abnormal observations o∗ ∈ O such that O = {v(·, ·, d, h) | (d, h) ∈ D ×H}, extreme values

1Note that due to a server failure from Tuesday the 9th to Thursday the 11th, no activity is observed
during this period.
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Figure 4: Number of retweets per hour along the month of August 2016

would only highlights trivial abnormalities which might only be related to the circadian
rhythm as well as the overall trend of the month.

To detect more subtle and local events, we can consider the aggregated and expected
context. Indeed, with the aggregated context we normalize each quantity of interaction per
hour by the total number of retweet of the day. With the expected context, on the other
hand, we consider each of these proportions with respect to its expected value at a given
hour. Then, the resulting abnormal hours are independent of daily variations as well as the
time of the day. Formally, in data cube C2(D ×H, v), relatively to data cube C1(D, v), we
consider a cell c∗ = (d∗, h∗) to be abnormal if the distance, l(d∗, h∗) (see eq. 1), between
the proportion of retweets observed during hour h∗ among all retweets of day d∗,

p(d, h) =
v(·, ·, d, h)

v(·, ·, d, ·)
,

and its expected proportion pexp during this specific hour of the day h∗,

pexp(h∗) =
1

|D|
∑
d∈D

p(d, h∗) ,

is abnormal compared to most distances observed for other hours (d, h) ∈ D ×H.
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Figure 5: Abnormal hours in the aggrega-
ted and expected context.

Figure 5 shows the distribution of the set
of observations O = {l(d, h) | (d, h) ∈
D × H}. As expected, most observa-
tions o ∈ O follow a normal distribution
centred on µ = 0 (gray zone), whereas
some significantly deviates from it. This
means that most proportions are likely
to be generated by a Poisson counting
process of intensity pexp(d, h) while oth-
ers are not. Given a normal distribution
with outliers, we use here the classical
assumption that a value is anomalous if
its distance to the mean µ exceeds three

8



times the standard deviation σ [3], [11].
In this paper, we are only interested in hours during which the distance is higher than ex-
pected, thus, we mark an observation o∗ ∈ O as an outlier if o∗ > µ+ 3σ.

We find 15 abnormal hours for which the proportion of retweets behave unusually:

O∗ = {(3th, 11h), (12th, 23h), (21th, 21h), (22th, 17h), (22th, 18h), (22th, 19h),

(24th, 20h), (24th, 21h), (24th, 22h), (25th, 19h), (26th, 16h), (27th, 15h),

(28th, 14h), (28th, 15h), (29th, 8h)}.
We can notice that events on the 22th, 24th and 28th of August span over multiple hours.
More importantly, contrary to an analysis based on the basic context, we find hours within
the first three weeks of August as well as hours of low activity such as (29th, 8h) and
(12th, 23h).

5.2 Abnormal authors during events

Now, we focus in determining whether an hour’s abnormality is due to specific authors,
which have been retweeted predominantly, or, on the contrary, results from a more global
phenomenon. To do so, we study interactions in a restrained context by considering the
entities (a, d, h) ∈ A × T ∗, where T ∗ ⊆ O∗. For the same reasons as above, we use the
aggregated and expected context.

In this aggregated, expected and restricted context, in data cube C3(A × T ∗, v), relatively
to data cube C2(T ∗, v), we consider a cell c∗ = (a∗, d∗, h∗) to be abnormal if the distance,
l(a∗, d∗, h∗) (see eq. 1), between the proportion of retweets received by author a∗ during
hour (d∗, h∗) among all retweets of hour (d∗, h∗),

p(a∗, d∗, h∗) =
v(·, a∗, d∗, h∗)
v(·, ·, d∗, h∗)

and its expected proportion pexp during this specific hour of the day h∗,

pexp(a∗, h∗) =
1

|D|
∑
d∈D

p(a∗, d, h∗) ,

is abnormal compared to most distances of other triplets (a, d, h) ∈ A× T ∗.
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Figure 6: Evolution of abnormal authors on
the 24th of August from 20h to 22h.

Figure 6 displays the distribution of
the setO = {l(a, d, h)|(a, d, h) ∈ A×
{(24th, h′)}}, where h′ successively
takes the values 20h, 21h and 22h.
At 20h, all observations o ∈ O fol-
low a Gaussian distribution centred
on µ = 0, except two authors which
stand out strongly from other: Nico-
lasSarkozy, a candidate to the elec-
tion and TTpourlaFrance, his cam-
paign slogan. This means that on
the 24th at 20h, most authors be-
have the way they are expected to
at 20h on other days. Abnormal au-
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thors, in contrast, are much more retweeted than they usually are at 20h. At 21h, the set
of values is more homogeneous, there are more outliers, but less significant. In opposition
to the previous hour, this hour’s abnormality is not solely due to a few authors, consid-
erably retweeted, but to numerous authors retweeted on a smaller scale. Among these,
we see many journalists, politicians supporting Nicolas Sarkozy are still very present, and
individuals start to appear. At 22h, values spread over an even smaller range. This time,
outliers only consist in journalists and individuals. On the news, this event corresponds to
an interview of Nicolas Sarkozy on television news at 20h.

The study of this event with our method enable us to illustrate political communication
via Twitter. The more time passes, the more distributions are homogeneous. This shows
that the event becomes a global phenomenon as information spreads: first, politicians tweet
and are retweeted during the interview; one hour later, journalists propagate their analyses
and are rewteeted; information reach individuals which start to tweet and being retweeted
as well; finally, at 22h, information reaches a larger scale and more and more individuals
react and get retweeted.

6 Conclusion and Future Work

In this paper, we provided a method to explore temporal interactions and find outliers in
a multitude of different situations. We applied it on a set of politics-related retweets and
showed that it successfully highlights events as well as abnormally retweeted users. Section 5
only presents a small part of the extent of possibilities offered by our method. For instance,
we could continue our study and look into the spreaders dimension to explore the cause of
an author’s emergence. More generally, we could split the authors or spreaders dimension
into sub-dimensions according to their political leaning. Using restrained contexts, this
would allow us to study the behaviour of each community separately as well as communities
interactions. Also, we could include additional semantic dimensions. For instance, we could
consider 5-uplets (s, a, d, h, k) meaning that s retweeted a tweet written by a and containing
the hashtag k at time (d, h). Applying similar contexts along the hashtag dimension would
give us a lot more details on events’ content. Moreover, it would include tweets’ content
needed by numerous work in this domain. Finally, the reaction to a television show through
Twitter, as with Nicolas Sarkozy’s interview, shows that this study could be interesting in
researches aiming at characterizing the use of a second web-connected screen while watching
television, see for instance the work of Gil de Zúñiga et al. [9].
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