On the second largest component of random hyperbolic graphs
Résumé
We show that in the random hyperbolic graph model as formalized by [GPP12] in the most interesting range of 1/2 < α < 1 the size of the second largest component is Θ((log n)^(1/(1−α))), thus answering a question of [BFM13]. We also show that for α = 1/2 the corresponding size is Θ(log n), whereas for α = 1 it is Ω(n¨b) for some b > 0.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Commentaire | Ce pdf est la version preprint de l'article (version soumise à l'éditeur, avant peer-reviewing). |
Loading...