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On the second largest component of random hyperbolic
graphs

Marcos Kiwi∗ Dieter Mitsche†

December 7, 2017

Abstract

We show that in the random hyperbolic graph model as formalized by [GPP12] in
the most interesting range of 1

2 < α < 1 the size of the second largest component is

Θ((log n)1/(1−α)), thus answering a question of [BFM13]. We also show that for α = 1
2

the corresponding size is Θ(log n), whereas for α = 1 it is Ω(nb) for some b > 0.

1 Introduction

The model of random hyperbolic graphs introduced by Krioukov et al. [KPK+10] has at-
tracted quite a bit of interest due to its key properties also observed in large real-world net-
works. One convincing demonstration of this fact was given by Boguñá et al. in [BnPK10]
where a compelling (heuristic) maximum likelihood fit of autonomous systems of the in-
ternet graph in hyperbolic space was computed. A second powerful reason for why the
model initially caught attention is due to the experimental results reported by Krioukov
et al. [KPK+10, § X] confirming that the model exhibits the algorithmic small-world phe-
nomenon established by the groundbreaking letter forwarding experiment of Milgram from
the 60’s [TM67].

Another important aspect of the random graph model introduced in [KPK+10] is its
mathematically elegant specification and the fact that it is amenable to mathematical anal-
ysis. This partly explains why the model has been studied not only empirically by the
networking community but also analytically by theoreticians. For the latter, it is natural to
first consider those issues that played a crucial role in the development of the theory of other
random graph models. Among these, the Erdős-Rényi random graph model is undisputedly
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the most relevant. One of the most, if not the most, studied aspect of the Erdős-Rényi
model is the evolution (as a function of the graph density) of the size and number of its
connected components [ER60], specially the size of the largest one, but also the size of the
second largest. These studies have played a crucial role in the development of mathematical
techniques and significantly contributed to the understanding of the Erdős-Rényi random
graph model. For the random hyperbolic graph model, the study of the largest component’s
size was started by Bode, Fountoulakis and Müller [BFM13] and recently refined by Foun-
toulakis and Müller [FMar]. A logarithmic lower bound and polylogarithmic upper bound
for the size of the second largest component of random hyperbolic graphs (when 1

2
< α < 1)

were first established in [KMar]. In this note we improve on these bounds and determine
the precise order of the size of the second largest component of random hyperbolic graphs.

Model specification: In the original model of Krioukov et al. [KPK+10] an n-vertex size
graph G was obtained by first randomly choosing n points in BO(R) (the disk of radius
R = R(n) centered at the origin O of the hyperbolic plane). From a probabilistic point of
view it is arguably more natural to consider the Poissonized version of this model. Formally,
the Poissonized model is the following (see also [GPP12] for the same description in the
uniform model): for each n ∈ N, we consider a Poisson point process on the hyperbolic
disk of radius R := 2 log(n/ν) for some positive constant ν ∈ R+ (log denotes here and
throughout the paper the natural logarithm) and denote its point set by V (the choice of
V is due to the fact that we will identify points of the Poisson process with vertices of the
graph). The intensity function at polar coordinates (r, θ) for 0 ≤ r < R and 0 ≤ θ < 2π is
equal to

g(r, θ) := νe
R
2 f(r, θ),

where f(r, θ) is the joint density function with θ chosen uniformly at random in the interval
[0, 2π) and independently of r chosen according to the density function

f(r) :=


α sinh(αr)

cosh(αR)− 1
, if 0 ≤ r < R,

0, otherwise.

Identify then the points of the Poisson process with vertices (that is, for each vertex v ∈ V
we identify it with its position in polar coordinates (rv, θv)) and make the following graph
G = (V,E): for u, u′ ∈ V , u 6= u′, there is an edge with endpoints u and u′ provided the
distance (in the hyperbolic plane) between u and u′ is at most R, i.e., the hyperbolic distance
between u and u′, denoted by dh := dh(u, u′), is such that dh ≤ R where dh is obtained by
solving

cosh dh := cosh ru cosh ru′ − sinh ru sinh ru′ cos(θu−θu′). (1)

For a given n ∈ N, we denote this model by Poiα,ν(n). Note in particular that∫∫
g(r, θ)dθdr = νe

R
2 = n,
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and thus E|V | = n. The main advantage of defining V as a Poisson point process is motivated
by the following two properties: the number of points of V that lie in any region A ⊆ BO(R)
follows a Poisson distribution with mean given by

∫
A
g(r, θ)drdθ = nµ(A), and the numbers

of points of V in disjoint regions of the hyperbolic plane are independently distributed.
The restriction α > 1

2
and the role of R, informally speaking, guarantee that the result-

ing graph has bounded average degree (depending on α and ν only): if α < 1
2
, then the

degree sequence is so heavy tailed that this is impossible (the graph is with high probability
connected in this case, as shown in [BFMar]), and if α > 1, then as the number of vertices
grows, the largest component of a random hyperbolic graph has sublinear order [BFM15,
Theorem 1.4]. In fact, although some of our results hold for a wider range of α, we will
always assume 1

2
< α < 1; only in the concluding remarks we discuss the cases α = 1

2
and

α = 1.
It is known that for 1

2
< α < 1, with high probability the graph G has a linear size com-

ponent [BFM15, Theorem 1.4] and all other components are of polylogarithmic order [KM15,
Corollary 13], which justifies referring to the linear size component as the giant component.
Implicit in the proof of [BFM15, Theorem 1.4] is that the giant component of a random
hyperbolic graph G is the one that contains all vertices whose radial coordinates are at most
R
2

. More precise results including a law of large numbers for the largest component in these
networks were established recently in [FMar].

Main result and proof overview: In this note we determine the exact order of the size
of the second largest component, which we denote by L2(G).

We say that an event holds asymptotically almost surely (a.a.s.), if it holds with proba-
bility tending to 1 as n→∞. The main result of this note is the following:

Theorem 1. Let 1
2
< α < 1. Let G = (V,E) be chosen according to Poiα,ν(n). A.a.s.,

L2(G) = Θ(log
1

1−α n).

Moreover, for some sufficiently small constant b > 0, there are Ω(nb) components in G, each

one of size Θ(log
1

1−α n).

To establish the lower bound, we partition the disk into sectors, so that close to the central
axis of each sector, one can find a chain (a path) of vertices at a certain distance from the
boundary so that the expected number of vertices with larger radius and in the same sector
is of the desired order. While it is relatively easy to show that a constant fraction of these
vertices indeed connects to the chain, it is more work to show that none of these vertices
in fact is connected to the giant component. Technically, this is tedious since vertices at
all radii might potentially be connected to the giant component; vertices with smaller radii
might be more dangerous to have neighbors with smaller radii, whilst vertices with bigger
radii (close to the border) might be more dangerous to have neighbors with larger radii.

An original aspect of our lower bound analysis consists in identifying “walls”, that is,
regions W , inside BO(R) and close to its boundary (specifically, a collection of connected
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points at distance at least ` := R − O(logR) from the origin) which satisfy the following
conflicting properties: (i) they do not contain vertices, and (ii) for a sector Φ of BO(R)
strictly containing W , the region Φ \BO(`) is partitioned into connected regions W ′,W ,W ′′
in such a way that the hyperbolic distance between a point inW ′ and a point inW ′′ is greater
than R. The abundance of walls coupled with the fact that the subgraph of G induced by
the vertices in BO(R) \ BO(`) contains, many connected components (which we refer to as
pre-components) reduces the problem of bounding L2(G) from below to one of showing that
there are regions of BO(`) which are unlikely to contain vertices of G (these latter regions
are the ones where neighbors of pre-components can potentially lie).

Interestingly, the mentioned abundance of walls also explains the “forest-like” structure
close to the boundary of BO(R) that random hyperbolic graphs exhibit (see Figure 1).

(a) (b)

Figure 1: (Left) An instance G of Krioukov et. al.’s random hyperbolic graph model with
parameters n = 1000, α = 0.7, and ν = 1.1. (Right) The subgraph of G induced by the
vertices inside the dashed region shown on the left side, where angular coordinates have been
scaled by factor of 6 in order to better elicit the forest-like structure of the induced graph.

The upper bound of Theorem 1, comparably easier, makes use of the fact that all vertices
that are not too close to the boundary of BO(R) belong to the giant component. We can
thus find in every sector of not too big angle a vertex belonging to the giant component, and
by simple known geometric observations any other component must be squeezed between
two such sectors. Since the number of vertices in such a sector is concentrated, we get an
upper bound on the size of the second component.

To conclude our study of the size of the second largest component of random hyperbolic
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graphs we consider the relevant remaining cases where α = 1
2

or α = 1. In the former case,
we show that a.a.s. every vertex of the second largest component must be within C = Θ(1)
of the boundary of BO(R). Moreover, by some geometric considerations, such component
must be contained in a sector Φ of BO(R) for which Φ∩BO(R−C) does not contain vertices
of G. An analysis of the likely maximum angle such a sector Φ can have and of the number
of vertices that can be found in Φ \BO(R− C) yields the following:

Proposition 2. For α = 1
2
, a.a.s., L2(G) = Θ(log n).

For the α = 1 case, we show that a.a.s. there is 1
2
< λ < 1 and a vertex of degree Θ(n1−λ)

that belongs to a component separated from the giant, so we obtain the following:

Proposition 3. For α = 1 there exists γ, 0 < γ < 1 such that a.a.s., L2(G) = Ω(nγ).
Moreover, for some 0 < δ < γ and for some sufficiently small constant b > 0, a.a.s. there
are Ω(nb) components in G, each one of size Ω(nδ).

Related work: Although the random hyperbolic graph model was relatively recently in-
troduced [KPK+10], several of its key properties have already been established. As already
mentioned, in [GPP12], the degree distribution, the expected value of the maximum degree
and global clustering coefficient were determined, and in [BFM15], the existence of a giant
component as a function of α.

The threshold in terms of α for the connectivity of random hyperbolic graphs was given
in [BFMar]. Concerning diameter and graph distances, except for the aforementioned papers
of [KM15] and [FK15], the average distance of two points belonging to the giant component
was investigated in [ABF]. Results on the global clustering coefficient of the so called bino-
mial model of random hyperbolic graphs were obtained in [CF13], and on the evolution of
graphs on more general spaces with negative curvature in [Fou12]. Finally, the spectral gap
of the Laplacian of this model was studied in [KMar]

The model of random hyperbolic graphs for 1
2
< α < 1 is very similar to two different

models studied in the literature: the model of inhomogeneous long-range percolation in Zd
as defined in [DvdHH13], and the model of geometric inhomogeneous random graphs, as
introduced in [BKLb]. In both cases, each vertex is given a weight, and conditionally on
the weights, the edges are independent (the presence of edges depending on one or more
parameters). In [DvdHH13] the degree distribution, the existence of an infinite component
and the graph distance between remote pairs of vertices in the model of inhomogeneous
long-range percolation are analyzed. On the other hand, results on typical distances, diam-
eter, clustering coefficient, separators, and existence of a giant component in the model of
geometric inhomogeneous graphs were given in [BKLa, BKLb], bootstrap percolation in the
same model was studied in [KL16] and greedy routing in [BKL+17]. Both models are very
similar to each other, and similar results were obtained in both cases; since the latter model
assumes vertices in a toroidal space, it generalizes random hyperbolic graphs.

Notation: All asymptotic notation in this paper is respect to n. Expressions given in terms
of other variables such as O(R) are still asymptotics with respect to n, since these variables
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still depend on n. We say that an event holds with extremely high probability (w.e.p.), if for
every c > 0, there exists an n0 := n0(c) such that for every n ≥ n0 the event holds with
probability at least 1 − O(n−c). Note that the union of polynomially (in n) many events
(where the degree of the polynomial is not allowed to depend on c) that hold w.e.p. is also
an event that holds w.e.p. In what follows, any union bound is over at most O(n2) many
events.

2 Preliminaries

In this section we collect some of the known properties concerning random hyperbolic graphs.

By the hyperbolic law of cosines (1), the hyperbolic triangle formed by the geodesics
between points p′, p′′, and p, with opposing side segments of length d′h, d′′h, and dh respectively,
is such that the angle formed at p is:

θdh
(d′h, d

′′
h) = arccos

(cosh d′h cosh d′′h − cosh dh

sinh d′h sinh d′′h

)
.

Clearly, θdh
(d′h, d

′′
h) = θdh

(d′′h, d
′
h).

Remark 4. Recall that cosh(·) is at least 1 and strictly increasing in R+. Moreover, cosh2 x−
sinh2 x = 1. Hence, if 0 < x, y ≤ R, then

∂

∂x

(coshx cosh y − coshR

sinhx sinh y

)
=
− cosh y + coshR coshx

sinh2 x sinh y
>

coshR− cosh y

sinh2 x sinh y
≥ 0.

Since arccos(·) is strictly decreasing, it follows that θR(·, y) is strictly decreasing for fixed
0 < y ≤ R. By symmetry, a similar claim holds for θR(x, ·).

Next, we state a very handy approximation for θR(·, ·).

Lemma 5 ([GPP12, Lemma 3.1]). If 0 ≤ min{d′h, d′′h} ≤ R ≤ d′h + d′′h, then

θR(d′h, d
′′
h) = 2e

1
2

(R−d′h−d′′h)
(
1 + Θ(eR−d′h−d′′h)

)
.

Remark 6. We will use the previous lemma also in this form: let p′ and p′′ be two points
at distance R from each other such that rp′ , rp′′ >

R
2

and min{rp′ , rp′′} ≤ R. Then, taking
d′h = rp′ and d′′h = rp′′ in Lemma 5, we get

θR(rp′ , rp′′) := 2e
1
2

(R−rp′−rp′′ )
(
1 + Θ(eR−rp′−rp′′ )

)
.

Throughout, we will need estimates for measures of regions of the hyperbolic plane, and
more specifically, for regions obtained by performing some set algebra involving a few balls.
For a point p of the hyperbolic plane H2, the ball of radius ρ centered at p will be denoted
by Bp(ρ), i.e., Bp(ρ) := {q ∈ H2 : dh(p, q) ≤ ρ}.

Also, we denote by µ(S) the measure of a set S ⊆ H2, i.e., µ(S) :=

∫
S

f(r, θ)drdθ.

Next, we collect a few results for such measures.
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Lemma 7 ([GPP12, Lemma 3.2]). If 0 ≤ ρ < R, then µ(BO(ρ)) = e−α(R−ρ)(1 + o(1)).

A direct consequence of Lemma 7 is

Corollary 8. If 0 ≤ ρ′O < ρO < R, then

µ(BO(ρO) \BO(ρ′O)) = e−α(R−ρO)(1− e−α(ρO−ρ′O) + o(1)).

By a simple application of Chernoff bounds, we have the following lemma:

Lemma 9 ([KMar, Lemma 12]). Let V be the vertex set of a graph chosen according to
Poiα,ν(n). For every c > 0, there is a sufficiently large constant c′ = c′(c) such that if
S ⊆ BO(R) with µ(S) ≥ c′ log n/n, then with probability at least 1−n−c, |S∩V | = Θ(nµ(S)).
If moreover S ⊆ BO(R) is such that µ(S) = ω(log n/n), then w.e.p. |S ∩ V | = Θ(nµ(S)).

We need one more lemma.

Lemma 10 ([FK15, Lemma 9]). Let p, p′, p′′ ∈ BO(R) be such that θp ≤ θp′ ≤ θp′′ and let
dh(p, p′′) ≤ R. Then the following holds: if rp′ ≤ min{rp, rp′′}, then dh(p, p′), dh(p′, p′′) ≤ R.

3 Intermediate regime of α

In this section we prove the main result of this article which concerns the regime where
α takes values strictly between 1

2
and 1. Since our results are asymptotic, we may and

will ignore floors in the following calculations, and assume that certain expressions such as
R − logR

1−α , R − logR
1−α −

L
1−α for some constant L or the like are integers, if needed. When

working with a Poisson point process V , for a positive integer `, we refer to the vertices of
G that belong to BO(`) \BO(`− 1) as the `-th band or layer and denote it by V` := V`(G),
i.e., V` = V ∩BO(`) \BO(`− 1). Throughout this section we always assume that 1

2
< α < 1.

3.1 Upper bound

We start with an observation that simplifies arguing about the giant component of random
hyperbolic graphs. A similar but slightly weaker result was already proven in [KMar].

Lemma 11. Let ` := R− logR
1−α −

L
1−α and G = (V,E) be chosen according to Poiα,ν(n). For

every c > 0, there is a sufficiently large constant L := L(c) > 0 such that with probability at
least 1−O(n−c), all vertices in V ∩BO(`) belong to the giant component.

Proof. First observe that by [BFM15], w.e.p. every vertex v ∈ Vi with i ≤ R
2

belongs to
the giant component. Hence, it suffices to show that for a sufficiently large L and every
vertex v ∈ Vi with R

2
≤ i ≤ ` with probability at least 1 − O(n−c), there exists a path

connecting v to a vertex in V ∩ BO(R
2

). Taking a union bound, and iterating the argument
with i− 1 instead of i until i = R

2
, it is enough to show that for a fixed vertex v ∈ Vi with i

as before, with probability at least 1− O(n−(c+1)), vertex v has a neighbor in Vi−1. Indeed,
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by Remark 6, v is connected to vertex u ∈ Vi−1 if the angle at the origin between u and v is
O(θR(i, i)). By Corollary 8, we have

µ(Bv(R) ∩BO(i− 1) \BO(i− 2)) = Θ(e−α(R−i)e
1
2

(R−2i)) = Θ(e(1−α)(R−i)/n).

Since α < 1, this expression is clearly decreasing in i, and plugging in our upper bound on i,
we obtain

µ(Bv(R) ∩BO(i− 1) \BO(i− 2)) = Ω(e(R−`)(1−α/n) = Ω(log n/n),

where the constant hidden in the asymptotic expression can be made arbitrarily large by
choosing L large enough so that applying Lemma 9 guarantees that with probability at least
1−O(n−(c+1)), vertex v has Ω(log n) neighbors in Vi−1. By definition, v is connected by an
edge to any such vertex, and hence in particular with probability at least 1 − O(n−(c+1)),
vertex v has a neighbor in Vi−1.

Define next a φ-sector Φ to be a sector of BO(R), that contains all points in BO(R)
making an angle of at most φ at the origin with an arbitrary but fixed reference point.

We deduce from the previous lemma that in any not too small angle there will be at least
one vertex belonging to the giant component:

Lemma 12. For every c > 0, there are sufficiently large positive constants L := L(c) and
L′ := L′(c), such that for ` := R − logR

1−α −
L

1−α and φ := L′

n
(log n)1/(1−α), with probability at

least 1−O(n−c), every 2φ-sector Φ contains at least one vertex v ∈ V`.

Proof. By Lemma 11, for L sufficiently large, with probability at least 1−O(n−c), all vertices
in BO(`) belong to the giant component. Partition BO(R) into φ-sectors Φ1, . . . ,Φ2π/φ. By
Corollary 8, we get

µ(Φi ∩BO(`) \BO(`− 1)) = Θ(φe−α(R−`)) = Θ(log n/n).

For L′ sufficiently large, the constant hidden in the asymptotic notation can be made as large
as required by Lemma 9 to get that, with probability at least 1 − O(n−(c+1)), the number
of vertices in V` ∩ Φi is Θ(log n). By taking a union bound over all φ-sectors Φi (there
are 2π/φ = O(n) of them), this holds with probability at least 1 − O(n−c) in all of them
simultaneously. The statement then follows since every 2φ-sector Φ has to contain entirely
a φ-sector Φi, and by a union bound over all events.

We are now ready for the upper bound on the second largest component.

Proposition 13. Let G = (V,E) be chosen according to Poiα,ν(n). W.e.p.,

L2(G) = O(log
1

1−α n).
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Proof. Let c > 0. Let ` := `(L), L := L(c + 1), φ := φ(L′), and L′ := L′(c + 1) be as in the
statement of Lemma 12. By a union bound and appropriate choices of L and L′, Lemma 11
and Lemma 12 imply that, with probability at least 1 − O(n−(c+1)), all vertices in BO(`)
belong to the giant component and every 2φ-sector contains at least one vertex v ∈ BO(`).
Henceforth, condition on the latter event. Then, every vertex x outside the giant component
belongs to BO(R) \BO(`). Now, consider a component C distinct from the giant component
and let u, u′ be vertices in C such that |θu′ − θu| = maxx,x′ |θx − θx′ |, where the maximum
is taken over all pairs of vertices x, x′ belonging to C. If we had |θu′ − θu| ≥ 2φ then by
our conditioning there would be a vertex v ∈ BO(`) (thus in the giant component) such that
θu ≤ θv ≤ θu′ . Since there exists a path in C between u and u′ containing only vertices uj
with ruj > `, in such a path there must be a pair of vertices, say ui, uj, with rv ≤ rui , ruj ,
uiuj ∈ E, and θui ≤ θv ≤ θuj . By Lemma 10, then however, also uiv ∈ E and ujv ∈ E,
and hence u and u′ are connected to the giant component. Therefore, by our conditioning
we may assume that |θu′ − θu| < 2φ. Note that conditioning on Lemma 11 and Lemma 12
does not change the distribution of vertices in BO(R) \BO(`). Hence, since φ = ω(log n/n),

by Lemma 9, w.e.p. we get |C| = O(φn) = O((log n)
1

1−α ). By a union bound over all events,

with probability at least 1−O(n−c), it holds that L2(G) = O((log n)
1

1−α ) and the statement
follows.

3.2 Lower bound

We next turn to prove a lower bound matching the bound of Proposition 13. Let M =
M(α, ν) throughout this subsection be a sufficiently large constant. Partition BO(R) into ψ-
sectors with ψ := (ν/n)1−β for a sufficiently small constant β = β(α,M, ν) (first, M has to be
chosen sufficiently large as a function of the model parameters α and ν, independent of β, and
then, β has to be chosen small enough). Fix throughout this subsection ` := R− logR

1−α + M
1−α

(recall that we suppose that ` is an integer). Let φ := 9θR(`, `). By Lemma 5 and since
R = 2 log n

ν
,

θR(`, `) = (2 + o(1))
ν

n
eR−` = (2 + o(1))

ν

n
R

1
1−α e−

M
1−α . (2)

For each ψ-sector Ψ, consider the region Υ` := Υ`(Ψ) consisting of those points of BO(`) \
BO(` − 1) that belong to the φ-sector having the same bisector as Ψ. Next, we establish a
lower bound on the probability that V ∩Υ` induces a connected component of G. Actually,
we establish a stronger fact. In the ensuing discussion, unless we say otherwise, the ψ-sector
Ψ is assumed to be given and all regions as well as subgraphs mentioned depend on Ψ.

Lemma 14. Let Υ′1, . . . ,Υ
′
18 be a partition of Υ` into 18 parts, each Υ′i obtained as the

intersection of Υ` and a φ
18

-sector. The following hold:

(i).- Let B be the event that V ∩ Υ′i is non-empty for every i = 1, ..., 18. Then, B occurs
a.a.s.

(ii).- For sufficiently large n, conditioned on B, all vertices in V ∩ Υ` belong to the same
connected component.
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Proof. To prove (i), observe that by our choice of φ, Corollary 8, and (2), for each i,

µ(Υ′i) =
1

2
θR(`, `)µ(BO(`) \BO(`− 1)) = (1 + o(1))(1− e−α)

ν

n
e(1−α)(R−`).

Clearly, the events V ∩Υ′1 6= ∅, ..., V ∩Υ′18 6= ∅ are independent. Hence, by our choice of `,

P(B) = (1− e−ν(1+o(1))(1−e−α)e(1−α)(R−`))18 = 1 + o(1).

To prove (ii), note that if two vertices in V` form an angle at the origin of at most θR(`, `),
then by Remark 4 they are adjacent. Thus, every vertex in Υ′i is connected by an edge to
every vertex in Υ′i−1 ∪ Υ′i ∪ Υ′i+1, since the maximal angle such pairs of vertices form is, by

our choice of φ, at most 2 φ
18

= θR(`, `).

Henceforth, for two points p, p′ ∈ BO(R) let ∆φp,p′ denote the small angle in [0, π) between
p and p′ formed at the origin. By definition of θR(·, ·), we know that dh(p, p′) ≤ R if and
only if ∆φp,p′ ≤ θR(rp, rp′). Now, for i ∈ {0, . . . , R − `}, let Υ`+i be the collection of points
in BO(` + i) \ BO(` + i − 1) that belong to the (2υ`+i)-sector with the same bisector as Ψ
where

υ`+i :=
φ

2
+

i−1∑
j=0

θR(`− 1 + j, `+ j).

(Note that the previous definition of Υ` is consistent with the one given before Lemma 14.)
Similarly, for i ∈ {0, . . . , R−`}, let Ξ`+i be the collection of points inBO(`+i)\BO(`+i−1)

that belong to the (2ξ`+i)-sector with the same bisector as Ψ where

ξ`+i := θR(`− 1 + i, `− 1 + i) +
φ

2
+ ξ,

and ξ :=
R−`−1∑
j=0

θR(`− 1 + j, `+ j).

Finally, let Ξ :=
R−`⋃
i=0

Ξ`+i and Υ :=
R−`⋃
i=0

Υ`+i (see Figure 2). Clearly, Υ ⊆ Ξ.

Next we establish several facts concerning regions Ξ and Υ, but first we bound ξ just
defined. By Lemma 5, the formula for the sum of a geometric series, since R = 2 log n

ν
, and

by our choice of `

ξ = (2 + o(1))
ν

n
eR−`+

1
2

R−`−1∑
j=0

e−j = (2 + o(1))
e3/2

e− 1

ν

n
eR−`. (3)

Since e3/2/(e− 1) < 3, by (2), and our choice of φ, for sufficiently large n,

ξ < 3θR(`, `) =
1

3
φ. (4)

Let C be the event that there is no vertex in Ξ \Υ.

10



O φ 2φ

ξ

ξ
`− 1

R

1 1 1 1 1 1

Figure 2: Region Ξ is shown shaded in gray and region Υ diagonally hatched (not to scale).

Lemma 15. For sufficiently large n, the following hold:

(i).- For some constant C0 = C0(α) depending only on α, the probability that C occurs is
at least e−C0νRe−M .

(ii).- If p ∈ (BO(R) \BO(`− 1)) \ Ξ and p′ ∈ Υ, then dh(p, p′) > R.

Proof. To prove (i), observe that by Lemma 5, Corollary 8, by definition of Ξ`+i, the formula
for the sum of a geometric series and since

√
e/(e− 1) < 1,

µ(Ξ`+i \Υ`+i) = 2(ξ`+i − υ`+i)µ(BO(`+ i) \BO(`− 1 + i))

= 2
(

(2e+ o(1))
ν

n
eR−`−i + (2

√
e+ o(1))

ν

n
eR−`

R−`−1∑
j=i

e−j
)

(1− e−α)e−α(R−`−i)

≤ (8e+ o(1))(1− e−α)
ν

n
e(1−α)(R−`−i).

Hence, again by the formula for the sum of a geometric series and our choice of `,

µ(Ξ \Υ) ≤ (8e+ o(1))(1− e−α)

1− e−(1−α)

ν

n
e(1−α)(R−`)(1− e−(1−α)(R−`)) < C0

ν

n
Re−M ,

where C0 is a constant depending only on α. The sought after lower bound on the probability
that V ∩ Ξ \Υ is empty follows immediately.
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Next, consider (ii). To prove that dh(p, p′) > R it suffices to show that ∆φp,p′ > θR(rp, rp′).
Assume p ∈ (BO(`+ i) \BO(`+ i− 1)) \ Ξ and p′ ∈ Υ`+i′ . Hence,

∆φp,p′ > ξ`+i − υ`+i′ = θR(`− 1 + i, `− 1 + i) +
R−`−1∑
j=i′

θR(`− 1 + j, `+ j)

= (2e+ o(1))
ν

n
eR−`

(
e−i + e−i

′
√
e

e− 1
(1− e−(R−`−i′))

)
,

where the last equality follows from Lemma 5, since R = 2 log n
ν
, and the formula for the sum

of a geometric series. If i′ < R−`, then e−(R−`−i′) ≤ e−1, and since
√
e(1−e−1)/(e−1) ≈ 0.61,

applying Jensen’s inequality we obtain that for sufficiently large n,

∆φp,p′ > (2e+ o(1))
ν

n
eR−`e−

1
2

(i+i′) = θR(`− 1 + i, `− 1 + i′).

If i′ = R− `, then e−i ≥ e−
1
2

(i+i′) and e−(R−`−i′) = 1, so by Remark 4,

∆φp,p′ > θR(`− 1 + i, `− 1 + i) ≥ θR(`− 1 + i, `− 1 + i′).

Now, by Remark 4, Lemma 5, and again since R = 2 log n
ν
,

θR(rp, rp′) ≤ θR(`− 1 + i, `− 1 + i′) = (2e+ o(1))
ν

n
eR−`e−

1
2

(i+i′).

The last three displayed bounds imply that, for a sufficiently large n (independent of i and
i′), we have ∆φp,p′ > θR(rp, rp′) as claimed.

Observe that Ξ \ Υ is the union of two disconnected regions, say W ′ and W ′′. We refer
to any such region that does not contain vertices as a wall (Lemma 15 part (ii) corresponds
exactly to the second property satisfied by walls as described in Section 1).

For a given Ψ, let H be the subgraph of G induced by V ∩ Υ, where Υ = Υ(Ψ), and
denote by C := C(Υ) the collection of connected components of H that contain at least one
vertex in V ∩Υ`.

Let G be the event that C := C(Υ) has size Ω((log n)
1

1−α ).

Lemma 16. The event G occurs a.a.s. Moreover, all area exposed in G is inside Υ.

Proof. Let η = η(α, ν) be a sufficiently large constant, let Φ be the φ
3
-sector with the same

bisector as Ψ, and let `′ := R − c logR
1−α for some small constant 0 < c < 1. For each vertex

z ∈ VR−η ∩Φ, let Xz be the indicator random variable that indicates whether there exists a
path z = zR−η, . . . , z`′ in G so that zi ∈ Vi for every i.

We claim that for a sufficiently large n, there is a δ > 0 such that if z ∈ VR−η ∩ Φ, then
the expected value of Xz is at least δ. Indeed, suppose that for some i we found a path until
zi+1. By Lemma 5, Remark 4, and Corollary 8, the region R ⊆ BO(i) \ BO(i− 1) in which
the next vertex zi with the desired properties can be found satisfies

µ(R) ≥ θR(i+ 1, i)µ(BO(i) \BO(i− 1)) = (2 + o(1))(1− e−α)
ν

n
e(1−α)(R−i)− 1

2 , (5)
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and hence, with probability at most e−(2+o(1))ν(1−e−α)e(1−α)(R−i)−
1
2 no such vertex is found.

Thus, for some positive constant δ > 0, assuming η was chosen sufficiently large,

EXz ≥ 1−
R−η−1∑
i=`′

e−(2+o(1))ν(1−e−α)e(1−α)(R−i)−
1
2 ≥ δ. (6)

Now, let X :=
∑

zXz where the summation is over the z’s in VR−η ∩ Φ. We claim
that X = (1 + o(1))EX a.a.s. Indeed, by Lemma 5, Corollary 8, and (2), we have µ(Φ ∩
BO(R − η) \ BO(R − η − 1)) = Θ( 1

n
R

1
1−α ). Thus, by Lemma 9, for η large enough, w.e.p.,

|VR−η ∩Φ| = Θ((log n)
1

1−α ), and hence by (6), EX = Θ((log n)
1

1−α ). Moreover, in case there
is a path z = zR−η, . . . , z`′ in G so that zi ∈ Vi for every i, the total angle between z and z`′
is

∆φz,z`′ ≤
R−η−1∑
i=`′

∆φzi,zi+1
≤

R−η−1∑
i=`′

θR(i− 1, i) = O
(ν
n
eR−`

′
)

= O
(ν
n
R

c
1−α

)
= o(φ).

Also, if two such vertices z, z′ ∈ VR−η ∩Φ are at an angle ω((log n)
c

1−α ), then Xz and Xz′ are
independent. Since c < 1, most pairs of vertices are at angular distance ω((log n)

c
1−α ), and

thus E(X2) = (1 + o(1))(EX)2, so by Chebyshev’s inequality, a.a.s. X = (1 + o(1))EX as
claimed.

By the preceding discussion, in order to conclude that a.a.s. C has size X = (1 +

o(1))EX = Ω((log n)
1

1−α ) it is enough to show that a.a.s. the following event occurs: for
every vertex z in V`′ ∩ Φ there exists a path z = z`′ . . . z` in G with zi ∈ Vi. Indeed, similar
calculations as the ones performed above to estimate |VR−η ∩Φ| yield that w.e.p. |V`′ ∩Φ| =
O((log n)

1
1−α ). By calculations as in (5) together with a union bound, the desired event does

not occur with probability

O((log n)
1

1−α e− logc n) + P
(
|V`′ ∩ Φ| = ω((log n)

1
1−α
)

= eΘ(log logn)−logc n + o(n−1) = e−Θ(logc n).

Finally, let z be a vertex in VR−η ∩ Φ for which there exists a path z = zR−η, . . . , z` in
G with zi ∈ Vi for all i. Note that the angle ∆φz,z` between the endvertices z and z` of the
path satisfies, by Remark 4,

∆φz,z` ≤
R−η−1∑
i=`

∆φzi,zi+1
≤

R−η−1∑
i=`

θR(i− 1, i) ≤
R−`−1∑
i=0

θR(`− 1 + i, `+ i) = ξ.

Thus, by (4), the total angle between z and z`−1 is at most 1
3
φ. Since z is a vertex in Φ, it

lies within an angle of at most φ
6

of the bisector of Ψ. Thus, all vertices of the z, ..., z` path
are inside Φ, so by construction are also within Υ, and hence in establishing that G occurs
a.a.s. only Υ ∩ Φ needs to be exposed.

Now, in order to have a component disconnected from the giant component it is enough
that all vertices in Υ have no neighbors in BO(R) \Υ. By Lemma 15 Part (ii), this happens

13



if V ∩ Ξ \ Υ is empty and no vertex in Υ can have a neighbor in (BO(R) \ BO(` − 1)) \ Υ.
However, it could have neighbors in BO(`− 1). We next deal with this situation. First, we
show that it is unlikely for such neighbors to fall within BO(`− 1) \BO((1− β

2
)R) and then

we deal with the possibility of having neighbors in BO((1− β
2
)R) (recall that β = β(M) is a

sufficiently small constant).
Let H be the event that no vertex in Υ has a neighbor in BO(`− 1) \BO((1− β

2
)R).

Lemma 17. There is a constant C1 = C1(α) depending only on α so that for sufficiently
large n the event H occurs with probability at least e−C1νRe−M . Moreover, all area exposed in
H is inside Ψ ∩BO(`− 1) \BO((1− β

2
)R).

Proof. Since by definition υ`+i increases with i, all vertices in Υ are within an angle 2υR =
2(φ

2
+ξ), so recalling (4) also within an angle 2φ. Moreover, by Remark 4, between two points

within distance at most R one of which is in BO(j + 1) \ BO(j), (1− β
2
)R ≤ j ≤ `− 2, and

the other one in Υ there is an angle at the origin of at most θR(j, `−1). Hence, by Lemma 5
and Lemma 7, and again by our choices for φ and `, the expected number of neighbors of
the vertices in Υ that are inside BO(`− 1) \BO((1− β

2
)R) is at most

n
`−2∑

j=(1−β
2

)R

2(υR + θR(j, `− 1))µ(BO(j + 1) \BO(j))

≤ 2φnµ(BO(`)) + 2
`−2∑

j=(1−β
2

)R

θR(j, `− 1)nµ(BO(j + 1))

≤ 18(2 + o(1))νe(1−α)(R−`) + 2(2e3/2−α + o(1))νe
1
2

(R−`)
∑
k≥R−`

e−(α− 1
2

)k

≤ C1νRe
−M ,

where C1 is a constant depending on α, but independent of M . The lower bound on P(H)
immediately follows.

To conclude, observe that all area exposed in H is inside the ψ-sector Ψ, as all area
exposed lies within an angle of at most 2(υR + θR(`− 1, (1− β

2
)R)), which by the preceding

discussion, Lemma 5, and our choices of ψ, φ, and `, is at most

2φ+ 2(2
√
e+ o(1))e

1
2

(R−`−(1−β
2

)R) =
(ν
n

)1−β
2

+o(1)

= o(ψ).

If for a sector Ψ the events B, C,G,H hold, then we have found a precomponent of size

Θ((log n)
1

1−α ): by G and B, there is a collection of vertices in Υ connected to each other

(but perhaps not separated from the giant component) of size Θ((log n)
1

1−α ). All events are
independent or positively correlated: the events B, C, and H are independent because they
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expose disjoint regions of Ψ\BO((1− β
2
)R). For the same reason, the events C, G, and H are

independent. The event G is positively correlated with B. Hence, by combining Lemmata 14,
15, 16 and 17 we get

P(B ∩ C ∩ G ∩H) ≥ (1 + o(1))e−C0νRe−M e−C1νRe−M = e−cMR (7)

for some constant cM = cM(α, ν) > 0 that can be made as small as desired by choosing M
sufficiently large. Hence, for a given sector Ψ, the probability to have a precomponent of

size Θ((log n)
1

1−α ) is at least e−cMR, independent of β. Observe also that all events B, C,
G, H expose only areas inside Ψ \ BO((1 − β

2
)R), and thus the events corresponding to the

existence of a precomponent in different ψ-sectors are independent.
Now, consider the partition ofBO(R) into ψ-sectors Ψ1, . . . ,Ψ2π/ψ. By (7), the probability

that there is no ψi with a precomponent is therefore at most

(1− e−cMR)n
1−β+o(1) ≤ e−n

1−β−cM+o(1)

, (8)

which tends to 0 faster than the inverse of any fixed polynomial in n, if cM is chosen small
enough so that 1− β − cM > 0 (such a choice exists, since cM is independent of β). Hence,

w.e.p. there exists a ψ-sector Ψ that contains a precomponent of size Θ((log n)
1

1−α ).
Let S be the event that a randomly chosen ψ-sector Ψ is such that all vertices in Υ = Υ(Ψ)

have no neighbor inside BO((1− β
2
)R).

Lemma 18. The event S holds a.a.s.

Proof. By Remark 4, for a vertex in V ∩ Υ not to have a neighbor in Vj, j ≤ (1 − β
2
)R, a

region of angle at most θR(`−1, j−1) = (2e+o(1))e
1
2

(R−`−j) has to be free of vertices. Also,
as observed at the beginning of the proof of Lemma 17, all vertices inside Υ are within an
angle of 2φ. Hence, the region R ⊆ BO((1− β

2
)R) that needs to be empty in order for S to

hold satisfies

µ(R) = (2e+ o(1))

(1−β
2

)R∑
j=0

(
e

1
2

(R−`−j) + 2φ
)
e−α(R−j)

= O(R
1

1−α e−αR+(α− 1
2

)(1−β
2

)R) = n−1−β(α− 1
2

)+o(1).

Thus, the expected number of vertices inside R is o(1), and by Markov’s inequality, the event
S holds a.a.s.

To prove Theorem 1, observe now that if in addition to the existence of a precomponent
the event S holds, then the precomponent inside the randomly chosen ψ-sector Ψ forms
a connected component separated from the giant component. Since by (8) w.e.p. there is
a precomponent, by Lemma 18, by a union bound, a.a.s. there exists a component of size

Θ((log n)
1

1−α ). Summarizing, we have established the following:

Proposition 19. For 1
2
< α < 1, a.a.s. L2(G) = Θ((log n)

1
1−α ).
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In fact, we have established that for some sufficiently small β′ > 0 a.a.s. there are Ω(nβ
′
)

components of size Θ((log n)
1

1−α ): indeed, the partition of BO(R) into ψ-sectors can be
grouped into groups of sectors making for a total angle of n−β

′′
, where β′′ > 0 is chosen small

enough so that (8) holds in each group, and also small enough, so that a union bound of all
events over all groups still holds as well.

Proposition 13, Proposition 19, and the previous paragraph argument yield Theorem 1.

4 Boundary cases of α

As noted in the introduction, for the hyperbolic random graph model, the interesting range
of the parameter is when 1

2
≤ α ≤ 1. In this section we investigate the size of the second

largest component when α takes the values 1
2

or 1.

4.1 Case α = 1
2

By [BFMar], for α = 1
2
, it is known that for ν ≥ π, with probability tending to 1, the random

graph G is connected, whereas for smaller values of ν, the probability of being connected is
a continuous function of ν tending to 0 as ν → 0.

On the one hand, for any constant ν, there exists a constant C (with C being large as ν
being small) so that a.a.s. each vertex v ∈ BO(R−C) belongs to the giant component: indeed,
for a vertex v ∈ BO(i)\BO(i−1) with R

2
< i ≤ R−C, the expected number of neighbors of v

that belong to BO(j) \BO(j− 1) with say j > R
2

is Θ(e
1
2

(R−i−j)ne−
1
2

(R−j)) = Ω(1), where the
constant can be made large by making C large. Hence, the probability that v does not find
a neighbor in BO(5R

6
) \ BO(4R

5
) is e−Ω(R), where the constant in the exponent can be made

large by choosing C large. By a similar argument, a.a.s. every vertex in BO(5R
6

) \ BO(4R
5

)
also has a neighbor in BO(R

2
) \ BO(R

4
). Since all vertices within BO(R

2
) form a clique, all

vertices in BO(R − C) thus form a component of linear size. Now, by choosing a sector Φ
of angle C ′ log n/n with C ′ = C ′(C) sufficiently large, by Chernoff bounds, each such sector
will a.a.s. contain a vertex in BO(R − C). Hence, a.a.s. the second component has to be
contained in at most two consecutive sectors, as otherwise, by Lemma 10, any path whose
vertices are all in BO(R) \ BO(R − C) spanning two sectors, as well as the component to
which such path belongs, would necessarily also have to be connected to a vertex of the giant
component. Since the number of vertices in each sector of angle C ′ log n/n is a.a.s. O(log n),
this upper bound holds also for the size of the second component.

On the other hand, for ν sufficiently small, we now show that a.a.s. there exists a sector
Φ of angle ε log n/n with ε = ε(C) sufficiently small so that the following three events hold:

(i).- inside Φ there is no vertex v in BO(R− C),

(ii).- there exists a path of length ε′ log n (ε′ sufficiently small) with all vertices being in
ε′ log n consecutive subsectors of Φ of angle ε′′/n (with ε′′ = ε′′(C) small enough),
with all but the first and last vertex belonging to BO(R−C1 + 1) \BO(R−C1) while
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the first and last belong to BO(R−C1) \BO(R−C1 − 1) (for C1 a small constant in
comparison to C, but not too small so that any two vertices in consecutive subsectors
are adjacent; clearly, if a smaller value of C1 is needed below, then this can be achieved
by making ε′′ smaller), and except for this first and last vertex in all these ε′ log n
subsectors there is no vertex v in BO(R− C1) \BO(R− C), and

(iii).- no vertex of the path is connected to the giant component.

Note that for a fixed sector Φ condition (i) is satisfied with probability e−Θ(R) with the con-
stant in the exponent small for ε small. Condition (ii) also holds with probability e−Θ(R) with
the constant small for ε′ small. By Lemma 10, the last condition is satisfied if the leftmost
and rightmost vertex of the path do not connect to the giant component, which once again
happens with probability e−Θ(R) (again with a constant in the exponent that can be made
small for C1 still small). All three conditions are either independent or positively correlated.
Thus the expected number of sectors Φ for which all conditions hold is ne−Θ(R)/ log n = ω(1)
for ε, ε′, ε′′ sufficiently small. A second moment method analogous to the one in Lemma 16
shows that different sectors are ”almost” independent (special care is taken of vertices close
to the center as in Lemma 17 and Lemma 18). Thus, a.a.s. such a sector exists, so a.a.s., the
second largest component is of size Ω(log n), and thus we obtain Proposition 2.

4.2 Case α = 1

Again by [BFM15], for α = 1, for ν sufficiently large, a.a.s. there exists a giant com-
ponent, whereas for ν small enough, a.a.s. the largest component is sublinear. Choose
` = λR for some 1

2
< λ < 1 and consider a vertex v in BO(`) \ BO(` − 1) (there are

w.e.p. Θ(ne−(R−`)) = Θ(n2λ−1) such vertices). Since the expected number of neighbors of v

in BO(`) is Θ(ne−(R−`)e
1
2

(R−2`)) = Θ(1) (where the constant can be made small enough by
choosing ν sufficiently small), there is a positive probability that v has no neighbor in BO(`).

Now, for i ∈ {1, ..., R− `}, let Υ`+i be the collection of points of BO(`+ i) \BO(`+ i− 1)
that belong to the (2υ`+i)-sector whose bisector contains the segment Ov where

υ`+i :=
i−1∑
j=0

θR(`− 1 + j, `+ j) = Θ(e
1
2

(R−2`)).

Let Υ =
⋃R−`
i=1 Υ`+i. For every vertex v ∈ Υ`+i, as before, there is a positive probability

that v has no neighbor in BO(` + i) \ Υ. A similar argument shows that there is a positive
probability that v has no neighbor in BO(`+ i+ d) \Υ for fixed d > 0. On the other hand,
its neighbors in BO(`+ i+ d) for d sufficiently large must lie in Υ: indeed, if v is adjacent to

a vertex w ∈ BO(`+ i+d), then the angle at the origin between v and w is O(e
1
2

(R−2`−2i−d)),
whereas

υ`+i+d − υ`+i =
i+d−1∑
j=i

θR(`− 1 + j, `+ j) = Θ(e
1
2

(R−2`−2i)),
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which for sufficiently large d is larger than the maximum angle between v and w, and hence
if v and w are adjacent, then w ∈ Υ.

Since the number of vertices inside Υ is, w.e.p.,

n
R−∑̀
i=1

µ(Υ`+i) = n

R−∑̀
i=1

υ`+iµ(BO(`+ i) \BO(`+ i− 1)) = Θ(n2(1−λ)),

and since the events that all vertices in Υ`+i have no neighbors in BO(`+ i)\Υ are positively
correlated (also the union of all these events over all i), with probability at least e−Θ(R) = n−γ

no vertex in Υ has a neighbor in (BO(R) \ BO(` − 1)) \ Υ, where the constant γ in the
exponent can be made small for λ close to 1. In this case, the original vertex v is contained
in a component separated from the giant component (if the latter one exists) and its size is

at least the degree of the starting vertex, thus at least Θ(e
1
2

(R−`)) = Θ(n1−λ).
Choosing angles sufficiently well separated and as before, taking care of vertices close to

the origin (more precisely, on the one hand, a.a.s. there is no vertex in BO(0.49R), and on the
other hand the angle exposed inside BO(`)\BO(0.49R) of possible neighbors of vertices in Υ
is Θ(n1−λ−0.49); for λ close to 1 the number of disjoint such angles is Θ(nλ+0.49−1) = Ω(nγ)
with γ from before, and thus, for λ close to 1, with probability tending to 1, there will be
a second component of polynomial size. As in the case 1

2
< α < 1, a regrouping of BO(R)

into groups of sectors making for a angle of n−β for β > 0 sufficiently small, the argument
shows that many polynomial-size components exist (of size Ω(nδ) for some 0 < δ < γ), thus
establishing Proposition 3. We do not know the exponent of the second component, though.

5 Final remarks

For 1
2
< α < 1, the proof argument put forth in this article does not seem strong enough

to be able to pinpoint the constant accompanying the (log n)
1

1−α term in the asymptotic
expression derived for L2(G) in Theorem 1. We believe that developing techniques that
would allow to do so is a worthwhile and interesting endeavor.
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