Integer multiplication in time O(n log n) - Archive ouverte HAL Access content directly
Journal Articles Annals of Mathematics Year : 2021

Integer multiplication in time O(n log n)


We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representa- tion. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer’s fast polynomial transforms.
Fichier principal
Vignette du fichier
nlogn.pdf (571.66 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02070778 , version 1 (18-03-2019)
hal-02070778 , version 2 (28-11-2020)



David Harvey, Joris van der Hoeven. Integer multiplication in time O(n log n). Annals of Mathematics, 2021, ⟨10.4007/annals.2021.193.2.4⟩. ⟨hal-02070778v2⟩
81445 View
227633 Download



Gmail Mastodon Facebook X LinkedIn More