An Interfacial Friction Law for a Circular EHL Contact Under Free Sliding Oscillating Motion - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Tribology Letters Année : 2013

An Interfacial Friction Law for a Circular EHL Contact Under Free Sliding Oscillating Motion

Résumé

The friction response of a lubricated interface under free sliding oscillating motion is investigated as a function of the contact pressure and the rheology of the lubricant in terms of viscosity and piezoviscosity. For loaded contacts, both velocity dependent friction, referred to as viscous damping, and friction independent of the instantaneous sliding velocity contribute to the energy dissipation. Viscous damping mainly corresponds to the dissipation in the lubricant meniscus surrounding the contact, while dissipation within the confined lubricated interface is mainly independent of the instantaneous sliding velocity. The friction coefficient independent of the instantaneous sliding velocity falls on a master curve for the wide range of tested operating conditions and lubricant rheological properties. The master curve is a logarithmic function of a dimensionless parameter corresponding to the ratio of the viscosity of the confined lubricant to the product of the pressure and a characteristic time. The physical meaning of this latter and the friction law are discussed considering the confined interface as a viscoelastic fluid or a non-Newtonian Eyring fluid.
Fichier principal
Vignette du fichier
Rigaud_InterfacialFrictionLawForCircularEHLContactUnderFreeSlidingOscillatingMotion.pdf (962.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02068288 , version 1 (15-03-2019)

Identifiants

Citer

Emmanuel Rigaud, D. Mazuyer, J. Cayer-Barrioz. An Interfacial Friction Law for a Circular EHL Contact Under Free Sliding Oscillating Motion. Tribology Letters, 2013, 51 (3), pp.419-430. ⟨10.1007/s11249-013-0177-z⟩. ⟨hal-02068288⟩
21 Consultations
127 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More