Computing the Rank of Large Sparse Matrices over Finite Fields - Archive ouverte HAL
Communication Dans Un Congrès Année : 2002

Computing the Rank of Large Sparse Matrices over Finite Fields

Résumé

We want to achieve efficient exact computations, such as the rank, of sparse matrices over finite fields. We therefore compare the practical behaviors, on a wide range of sparse matrices of the deterministic Gaussian elimination technique, using reordering heuristics, with the probabilistic, blackbox, Wiedemann algorithm. Indeed, we prove here that the latter is the fastest iterative variant of the Krylov methods to compute the minimal polynomial or the rank of a sparse matrix.
Fichier principal
Vignette du fichier
sparseeliminationCASC2002.pdf (294.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02068056 , version 1 (14-03-2019)

Identifiants

  • HAL Id : hal-02068056 , version 1

Citer

Jean-Guillaume Dumas, Gilles Villard. Computing the Rank of Large Sparse Matrices over Finite Fields. Computer Algebra in Scientific Computing (CASC) 2002, Victor G. Ganzha, Ernst W. Mayr, Evgenii V. Vorozhtsov, Sep 2002, Yalta, Ukraine. pp.47--62. ⟨hal-02068056⟩
153 Consultations
457 Téléchargements

Partager

More