Computing the Rank of Large Sparse Matrices over Finite Fields
Résumé
We want to achieve efficient exact computations, such as the rank, of sparse matrices over finite fields. We therefore compare the practical behaviors, on a wide range of sparse matrices of the deterministic Gaussian elimination technique, using reordering heuristics, with the probabilistic, blackbox, Wiedemann algorithm. Indeed, we prove here that the latter is the fastest iterative variant of the Krylov methods to compute the minimal polynomial or the rank of a sparse matrix.
Domaines
Calcul formel [cs.SC]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...