Adaptive frames selection for SLAM algorithms on real and synthetic stereo datasets - Archive ouverte HAL
Poster De Conférence Année : 2019

Adaptive frames selection for SLAM algorithms on real and synthetic stereo datasets

Sélection adaptative de séquence de trame pour algorithmes de SLAM testé sur des jeux de données réels et synthétiques

Sébastien Pouteau
  • Fonction : Auteur
Serge Chaumette
  • Fonction : Auteur
  • PersonId : 830501
Jean-Philippe Domenger
  • Fonction : Auteur

Résumé

Context From a stereovision acquisition, it is possible to build a D point cloud of the environment. For a moving cameras pair, we can use SLAM to merge the generated clouds of points, and create a dense D scene surrounding the sensors, without any other sensor than the two cameras. Figure: Point cloud generation from a stereo acquisition. To carry out this task on computationnaly limited devices, we offer a solution to efftiently reduce the number of processed frames without increasing the generated error. Adaptive frames selection Our algorithm focuses on strongly reducing the number of frames when the trajectory is mostly straight, and keeping a high frame rate during rotations. The gure below illustrates two outputs of the same SLAM algorithm with the same number of input frames with and without our adaptive frames selection. Figure: Adaptive frames selection. With our method (in black and red), the estimated trajectory ts perfectly the ground truth (in green). Whereas a naive frame selection (in blue) strongly moves away. Real-time Dense D Reconstruction Pipeline Our adaptive SLAM method lets us build a real-time dense 3D reconstruction process on a small device (such as a Raspberry Pi) without the need of a huge computationnal cost. Figure: Real-time dense 3D reconstruction pipelne. Figure: reconstructed point cloud correctly tting the GPS coordinates (in red).
Fichier principal
Vignette du fichier
labri__Copy_.pdf (6.66 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02066025 , version 1 (13-03-2019)

Identifiants

  • HAL Id : hal-02066025 , version 1

Citer

Antoine Billy, Sébastien Pouteau, Serge Chaumette, Pascal Desbarats, Jean-Philippe Domenger. Adaptive frames selection for SLAM algorithms on real and synthetic stereo datasets. Journée de l'école doctorale Mathématiques et Informatiques, Apr 2019, Talence, France. ⟨hal-02066025⟩

Collections

CNRS
69 Consultations
33 Téléchargements

Partager

More