Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling

Résumé

Highlights• We proposed an air quality evaluation framework using fixed and mobile sensing units.• It also integrates machine learning methods to predict the air quality from mobile data.• Three experimenting protocols for air pollution monitoring have been implemented.• NO2 pollution at human breathing levels was 3-5 times higher than those of static units.• Decision trees and neural networks can accurately predict mobile air quality.• Humidity and noise are the most important factors affecting the NO2 prediction.
Fichier principal
Vignette du fichier
JCLP_Revised_only_black_text.pdf (2.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-02061928 , version 1 (03-01-2024)

Licence

Identifiants

  • HAL Id : hal-02061928 , version 1

Citer

Adriana Simona Mihăiţă, Laurent Dupont, Olivier Chery, Mauricio Camargo, Chen Cai. Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling. 2019. ⟨hal-02061928⟩
92 Consultations
102 Téléchargements

Partager

More