Consistency of the maximum likelihood and variational estimators in a dynamic stochastic block model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Consistency of the maximum likelihood and variational estimators in a dynamic stochastic block model

Résumé

We consider a dynamic version of the stochastic block model, in which the nodes are partitioned into latent classes and the connection between two nodes is drawn from a Bernoulli distribution depending on the classes of these two nodes. The temporal evolution is modeled through a hidden Markov chain on the nodes memberships. We prove the consistency (as the number of nodes and time steps increase) of the maximum likelihood and variational estimators of the model parameters, and obtain upper bounds on the rates of convergence of these estimators. We also explore the particular case where the number of time steps is fixed and connectivity parameters are allowed to vary.
Fichier principal
Vignette du fichier
article_dyn_2019_mars_prepub.pdf (494.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02061401 , version 1 (08-03-2019)
hal-02061401 , version 2 (17-09-2019)

Identifiants

Citer

Léa Longepierre, Catherine Matias. Consistency of the maximum likelihood and variational estimators in a dynamic stochastic block model. 2019. ⟨hal-02061401v1⟩
239 Consultations
180 Téléchargements

Altmetric

Partager

More