Semi-supervised Learning with Graphs: Covariance Based Superpixels For Hyperspectral Image Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Semi-supervised Learning with Graphs: Covariance Based Superpixels For Hyperspectral Image Classification

Résumé

In this paper, we present a graph-based semi-supervised framework for hyperspectral image classification. We first introduce a novel superpixel algorithm based on the spectral covariance matrix representation of pixels to provide a better representation of our data. We then construct a superpixel graph, based on carefully considered feature vectors, before performing classification. We demonstrate, through a set of experimental results using two benchmarking datasets, that our approach outperforms three state-of-the-art classification frameworks, especially when an extremely small amount of labelled data is used.
Fichier principal
Vignette du fichier
1901.04240.pdf (583.81 Ko) Télécharger le fichier
Vignette du fichier
HSI.png (484.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02057730 , version 1 (22-07-2019)

Identifiants

Citer

Philip Sellars, Angelica I. Aviles-Rivero, Nicolas Papadakis, David Coomes, Anita Faul, et al.. Semi-supervised Learning with Graphs: Covariance Based Superpixels For Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Symposium (IGARSS'19), Jul 2019, Yokohama, Japan. pp.592-595. ⟨hal-02057730⟩

Collections

CNRS IMB INSMI
70 Consultations
103 Téléchargements

Altmetric

Partager

More