Markovian explorations of random planar maps are roundish - Archive ouverte HAL
Article Dans Une Revue Bulletin de la société mathématique de France Année : 2020

Markovian explorations of random planar maps are roundish

Résumé

The infinite discrete stable Boltzmann maps are "heavy-tailed" generalisations of the well-known Uniform Infinite Planar Quadrangulation. Very efficient tools to study these objects are Markovian step-by-step explorations of the lattice called peeling processes. Such a process depends on an algorithm which selects at each step the next edge where the exploration continues. We prove here that, whatever this algorithm, a peeling process always reveals about the same portion of the map, thus growing roughly metric balls. Applied to well-designed algorithms, this easily enables us to compare distances in the map and in its dual, as well as to control the so-called pioneer points of the simple random walk, both on the map and on its dual.
Fichier principal
Vignette du fichier
UniversalPeeling.pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02052950 , version 1 (28-02-2019)

Identifiants

Citer

Nicolas Curien, Cyril Marzouk. Markovian explorations of random planar maps are roundish. Bulletin de la société mathématique de France, 2020, 148 (4), pp.709-732. ⟨10.24033/bsmf.2821⟩. ⟨hal-02052950⟩
60 Consultations
137 Téléchargements

Altmetric

Partager

More