New edge asymptotics of skew Young diagrams via free boundaries - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

New edge asymptotics of skew Young diagrams via free boundaries

Résumé

We study edge asymptotics of poissonized Plancherel-type measures on skew Young diagrams (integer partitions). These measures can be seen as generalizations of those studied by Baik-Deift-Johansson and Baik-Rains in resolving Ulam's problem on longest increasing subsequences of random permutations and the last passage percolation (corner growth) discrete versions thereof. Moreover they interpolate between said measures and the uniform measure on partitions. In the new KPZ-like 1/3 exponent edge scaling limit with logarithmic corrections, we find new probability distributions generalizing the classical Tracy-Widom GUE, GOE and GSE distributions from the theory of random matrices.
Fichier principal
Vignette du fichier
fb_plancherel_FPSAC_2.pdf (210.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02049722 , version 1 (12-03-2019)

Identifiants

Citer

Dan Betea, Jérémie Bouttier, Peter Nejjar, Mirjana Vuletić. New edge asymptotics of skew Young diagrams via free boundaries. 31st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2019), Jul 2019, Ljubljana, Slovenia. ⟨hal-02049722⟩
123 Consultations
71 Téléchargements

Altmetric

Partager

More