A simple master Theorem for discrete divide and conquer recurrences - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2021

A simple master Theorem for discrete divide and conquer recurrences

Olivier Garet

Abstract

The aim of this note is to provide a Master Theorem for some discrete divide and conquer recurrences: $$X_{n}=a_n+\sum_{j=1}^m b_j X_{\lfloor{\frac{n}{m_j}}\rfloor},$$ where the $m_i$'s are integers with $m_i\ge 2$. The main novelty of this work is there is no assumption of regularity or monotonicity for $(a_n)$. Then, this result can be applied to various sequences of random variables $(a_n)_{n\ge 0}$, for example such that $\sup_{n\ge 1}\mathbb{E}(|a_n|)<+\infty$.
Fichier principal
Vignette du fichier
divide-v2.pdf (139.16 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02049382 , version 1 (26-02-2019)
hal-02049382 , version 2 (15-02-2021)

Identifiers

Cite

Olivier Garet. A simple master Theorem for discrete divide and conquer recurrences. 2021. ⟨hal-02049382v2⟩
80 View
125 Download

Altmetric

Share

More