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A SIMPLE MASTER THEOREM FOR DISCRETE DIVIDE AND

CONQUER RECURRENCES

OLIVIER GARET

Abstract. The aim of this note is to provide a Master Theorem for some
discrete divide and conquer recurrences:

Xn = an +

m
∑

j=1

bjX⌊ n
mj

⌋,

where the mi’s are integers with mi ≥ 2. The main novelty of this work is
there is no assumption of regularity or monotonicity for (an). Then, this result
can be applied to various sequences of random variables (an)n≥0, for example
such that supn≥1 E(|an|) < +∞.

1. Introduction

Divide-and-conquer methods are widely used in Computer Science. The analysis
of the cost of the algorithm naturally leads to divide-and-conquer recurrences. The
methods to study these recurrences are popularized as “Master theorems” in the
literature of Computer Science. See e.g. the reference books by Cormen et al [3] or
Goodrich and Tamassia [7].

In the sequel, we consider sequences (Xn)n≥0 that are defined by X0 = a0, then

Xn = an +
m

∑

j=1

bjX⌊ n
mj

⌋,(1)

where the mi’s are integer with mi ≥ 2 and ⌊x⌋ denotes the only n ∈ Z such that
x − n ∈ [0, 1).

Of course, in Computer Science, an and Xn represent computation times and are
therefore positive. However, the case of negative an and Xn can be of theoretical
interest.

In the literature of Computer Science, (an) is supposed to be deterministic.
Nevertheless, in the context of randomized algorithm, eventually involving Monte-
Carlo simulation, it is natural to consider the case of a random (an) and observe
the fluctuations of the computation time.

One of the most general results in the field of Computer Science is due to Akra
and Bazzi [1]. They do not seek for an exact asymptotic limit, focusing of the order
of the fluctuations. Their methods rely on classical real analysis.

The mathematical literature is more focused on exact methods, that rely on
generating functions. The first paper in this spirit is Erdős et al [6], which solved
the case an = 0 with the help of renewal equations. Tauberian theorems lead to
simpler proofs of their result, see e.g. Choimet and Queffelec [2]. Recent results
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2 OLIVIER GARET

by Drmota and Szpankowski [4]) also rely on Tauberian theorems and some other
tools in complex analysis. They request some assumptions of monotonicity.

If one wants to cover the case of a random (an), the sequence (an) obviously
can not be supposed to be monotonic. Quite surprisingly, we did not find in the
literature any theorem of this kind, computing an exact limit without making some
assumption of monotonicity.

Let us clarify the assumptions: we assume that the bi’s are positive numbers
with

∑m
j=1 bj > 1, that the mi are integers with mi ≥ 2 and such that there exists

j, ℓ with
log mj

log mℓ
6∈ Q. The rational case, which is not considered here, is also of great

interest in Computer Science – see e.g. Roura [8] or Drmota and Szpankowski [4].
It is known that the general growth of (Xn) is governed by the value of the

positive root s0 for the equation
m

∑

j=1

bjm−s
j = 1.

As said before, the originality of the present paper lies in the assumption on the
(an): under the assumption that

+∞
∑

n=1

|an|

ns0
< +∞,

we prove that the sequence Xn

ns0
admits a limit L when n tends to infinity and give

a fairly simple closed expression for it.
As we will see, this allow to apply our Theorem to a large class of random

variables. Then, the limit L is a random variable, which appears as the sum of a
random series.

If we specialize to the case where the (an) are independent, then one can easily
control the random fluctuations of L.

2. The deterministic Theorem

Theorem 1. Let m ≥ 1, (b1, . . . , bm) be a family of non-negative numbers and
(m1, . . . , mm) be a family of integers with mi ≥ 2 and such that

• there exists j, ℓ with
log mj

log mℓ
6∈ Q;

•
∑m

j=1 bj > 1.

We denote by s0 the positive root s0 for the equation
m

∑

j=1

bjm−s
j = 1.

Then, there exists a sequence (ℓj)j≥0 of positive numbers such that for every se-
quence (an)n≥0 with

+∞
∑

n=1

|an|

ns0
< +∞,

then the sequence (Xn)n≥0 defined by X0 = a0 and the recursion (1) satisfies

lim
n→+∞

Xn

ns0
=

+∞
∑

j=0

ℓjaj .
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Note that if the sequence (aj)j≥0 is non-negative and not identically zero, the

limit
∑+∞

j=0 ℓjaj is positive, so we have found the correct speed for the growth of

(Xn)n≥0.

Proof. We denote by Ln(a) the value of Xn corresponding to the recursion (1) for
some sequence a.

The recursion equation. Let n0 be a non-negative integer and suppose first that
an = 0 for n > n0.

For n > n0, we have X(n) =
∑m

j=1 bjX(⌊ n
mj

⌋).

We can choose C such that |Xk| ≤ Cks0 for 0 < k ≤ n1 = max(n0, m1, . . . , mm).
Then, it follows by natural induction that |Xk| ≤ Cks0 for each k ∈ N∗. In the
sequel, we put X(t) = X(⌊t⌋) to simplify some notation. Now define

φ(s) = s

∫ +∞

n0+1

X(t)

ts+1
dt(2)

for s ∈ C with Re(s) > s0. The recursion Equation leads to

φ(s) = s

∫ +∞

n0+1

m
∑

j=1

bj

X( t
mj

)

ts+1
dt = s

m
∑

j=1

bjm−s
j

∫ +∞

n0+1

mj

X(t)

ts+1
dt

=





m
∑

j=1

bjm−s
j



 φ(s) + s

m
∑

j=1

bjm−s
j

∫ n0+1

n0+1

mj

X(t)

ts+1
dt.

Since

|

m
∑

j=1

bjm−s
j | ≤

m
∑

j=1

|bjm−s
j | =

m
∑

j=1

bjm
−Re(s)
j <

m
∑

j=1

bjm−s0

j = 1,

we can write, for Re(s) > s0:

φ(s) =
P (s)

1 −
∑m

j=1 bjm−s
j

, with P (s) = s

m
∑

j=1

bjm−s
j

∫ n0+1

n0+1

mj

X(t)

ts+1
dt(3)

Tauberian magic. Now, fix a non-negative integer n0 and suppose that the se-
quence a = (an)n≥0 is a = In0 with

In0

i = 1i≤n0
=

{

1 if i ≤ n0

0 else
.

By natural induction, it is easy to see that (Xn)n≥0 is non-decreasing.
It is also not difficult to see that 1 −

∑m
j=1 bjm−s

j does not vanish for s ∈ C with

Re(s) ≥ s0 and s 6= s0. Proceeding as in Choimet and Queffelec (see [2], section
4), we can note that, for Re(s) = s0

Re





m
∑

j=1

bjm−s
j



 =

m
∑

j=1

bjm−s0

j cos(log mjIm(s)) ≤

m
∑

j=1

bjm−s0

j = 1

In fact, the inequality in strict when Im(s) 6= 0. Overwise, we would have log mjIm(s) ∈

2πZ for each j, whence
log mj

log mk
∈ Q for each j, k, which has been excluded.
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It follows that for

c = Ress0
φ =

P (s0)
∑m

j=1 bjm−s0

j log(mj)
,

the map s 7→ φ(s) − c
s−s0

is holomorphic on {s ∈ C; Re(s) ≥ s0}.

Now note b(x) =
∑

n0<n≤x(Xn − Xn−1). The Abel transformation gives

+∞
∑

n=n0+1

Xn − Xn−1

ns
= s

∫ +∞

n0+1

b(t)

ts+1
dt

Since b(t) = X(t) − Xn0
, we have

+∞
∑

n=n0+1

Xn − Xn−1

ns
= s

∫ +∞

n0+1

X(t)

ts+1
dt −

Xn0

(n0 + 1)s
= φ(s) −

Xn0

(n0 + 1)s
.

Now, we will apply the Ikehara–Newman Theorem for series:

Proposition 1. Let (an)n≥1 be a sequence of non-negative real numbers, and a,

c be positive real numbers. Suppose that the Dirichlet series Φ(s) =
∑+∞

n=1 ann−s

is defined on the open half-plane Re(s) > a and that, more precisely, with A(x) =
∑

n≤x an for x ≥ 0, the following properties are verified:

• A(x)x−a is bounded on R+ ;
• Φ(s)− c

s−a
has a holomorphic extension G on the closed half-plane Re(s) ≥

a.

Then we have A(x) ∼ c
a
xa as x → +∞.

Since (Xn)n≥0 is non-decreasing, the sequence (Xn −Xn−1)n>n0
is non-negative,

so the Wiener-Ikehara Theorem for series applies: since b(t) = O(ts0 ) when t →
+∞, we get b(x) ∼ c

s0
xs0 ,so

lim
n→+∞

Ln(In0 )

ns0
=

∑m
j=1 bjm−s0

j

∫ n0+1
n0+1

mj

Lt(In0 )
ts0+1 dt

∑m

j=1 bjm−s0

j log(mj)
.

For n0 = 0, we have

ℓ0 = lim
n→+∞

Ln(δ0)

ns0
= lim

n→+∞

Ln(I0)

ns0
=

1
∑m

j=1 bjm−s0

j log(mj)

m
∑

j=1

bjm−s0

j

∫ 1

1
mj

1

ts0+1
dt

=
1

∑m

j=1 bjm−s0

j log(mj)

m
∑

j=1

bjm−s0

j

ms0

j − 1

s0

Note that this equality and the related convergence form the result by Erdős et
al [6].

Let n0 ≥ 1. The sequence (δn0
n )n≥0 is defined by

δn0

n =

{

1 if n = n0

0 else
.

Since δn0 = In0 − In0−1, it follows that

Ln(δn0 )n−s0 = Ln(In0 )n−s0 − Ln(In0−1)n−s0
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has a limit when n tends to infinity. Let us denote it by ℓn0
.

To compute it, take a = δn0 and consider again the associated φ. From (2), we
get ℓn0

= lims→s
+

0

1
s0

(s − s0)φ(s). On the other side, Equation (3) is still valid,

with

P (s) = s

m
∑

j=1

bjm−s
j

∫ n0+1

n0+1

mj

X(t)

ts+1
dt

= s

m
∑

j=1

bjm−s
j

∫ n0+1

max(n0,
n0+1

mj
)

1

ts+1
dt,

also

1

s0
(s − s0)φ(s) = −

s

s0

s0 − s

1 −
∑m

j=1 bjm−s
j

m
∑

j=1

bjm−s
j

∫ n0+1

max(n0,
n0+1

mj
)

1

ts+1
dt

and, considering that mj ≥ 2, we get

ℓn0
=

1
∑m

j=1 bjm−s0

j log(mj)

m
∑

j=1

bjm−s0

j

∫ n0+1

n0

1

ts0+1
dt.

Thanks to this expression and the previous one, it is clear that ℓj > 0 holds for
each j ≥ 0.

The general case. For n, j ≥ 0, we note Kj
n = Ln(δj). It is obvious that Kj

n = 0

for n < j and Kj
j = 1. It easily follows by natural induction on n that 0 ≤ Kj

n ≤
K0

n

K0
j

.

Now, the affine nature of the recursion gives

Xn =

n
∑

j=0

Kj
naj

For each j ≥ 0, we have lim
n→+∞

Kj
n

ns0
= ℓj . Also, the K0

j ’s are positive, with

lim
j→+∞

K0
j

js0
= ℓ0 > 0, so there exists M such that 0 < 1

K0
j

≤ M
js0

for each j ≥ 1 Then,

for each j, n ≥ 1, we have

|
Kj

naj

ns0
| ≤

K0
n

ns0

|aj |

K0
j

≤
|aj |

K0
j

≤ M
|aj |

js0

and by the Weierstrass criterion,

lim
n→+∞

Xn

ns0
=

+∞
∑

j=0

ℓjaj .

�

3. Application to sequences of random variables

We give below some applications of Theorem 1 to sequences of random variables.
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3.1. Convergence.

Theorem 2. Assume that the mi’s, the bi’s and s0 fulfill the assumptions of The-
orem 1 and (an) is a sequence of random variables. Under each of the following
sets of supplementary assumptions, the sequence (Xn)n≥0 defined by X0 = a0 and

the recursion (1) is such that Xn

ns0
almost surely converges to some random variable,

given as the sum of the random series:

L =

+∞
∑

j=0

ℓjaj .

(A)
∑m

j=1
bj

mj
> 1 and the (an) are integrable random variables with C =

supn≥1 E|an| < +∞.

(B)
∑m

j=1
bj

m2
j

> 1 and the an are random variables following the Cauchy C(0, 1)

Law.

Proof. (A) the condition
∑m

j=1
bj

mj
> 1 implies that s0 > 1. We have E(

∑+∞
n=1

|an|
ns0

) ≤

Cζ(s0) < +∞, so
∑+∞

n=1
|an|
ns0

< +∞ almost surely, which gives the almost

sure behavior of Xn

ns0
.

(B) the condition
∑m

j=1
bj

m2
j

> 1 implies that s0 > 2. We fix η > 1 with

s0 − η > 1. Then P(|an| > nη) = O(n−η) and
∑+∞

n=1 P(|an| > nη) < +∞,
so by the Borel-Cantelli Lemma, for almost every ω, there exists n0(ω) with

|an(ω)| ≤ nη for n ≥ n0(ω), which gives the convergence of
∑

n≥1
|an|
ns0

and
our Master Theorem still applies.

�

3.2. Non-vanishing limit. We have already noticed that the limit does not vanish
when the aj are non-negative. In the case of random independent an, it is very
unlikely that the limit is null, even for signed variables.

Theorem 3. Assume that the ai’s, mi’s, the bi’s and s0 fulfill the assumptions of
Theorem 2 and also that (an) is a sequence of independent random variables, with

at least one j0 ≥ 0 such that aj is non-atomic. Then, the limit L =
∑+∞

j=0 ℓjaj is

non-atomic, and particularly P(L = 0) = 0.

Proof. By independence, the characteristic function of L satisfies

∀t ∈ R |φL(t)| =
+∞
∏

j=0

|φℓjaj
(t)| ≤ |φℓj0

aj0
(t)|.

Therefore

lim
T →+∞

1

2T

∫ T

−T

|φL(t)|2 dt ≤ lim
T →+∞

1

2T

∫ T

−T

|φℓ0aj0
(t)|2 dt = 0,

which implies that L is non-atomic (see e.g. Durrett [5], section 3.3). �

3.3. Exponential moments.

Theorem 4. Assume that the mi’s, the bi’s and s0 fulfill the assumptions of The-
orem 1 and (an) is a sequence of independent random variables. The sequence
(Xn)n≥0 is defined by X0 = a0 and the recursion (1).
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• If there exists a distribution µ with exponential moments such that |an| is
stochastically dominated by µ∗n for each n ≥ 0, then |Xn| has exponential
moments for each n.

• If s0 > 1 (or equivalently
∑m

j=1
bj

mj
> 1) and there exists a distribution µ

with exponential moments such that |an| is stochastically dominated by µ
for each n ≥ 0, then Xn

ns0
→ L a.s. where |L| has exponential moments.

• If s0 > 2 (or equivalently
∑m

j=1
bj

m2
j

> 1) and there exists a distribution µ

with exponential moments such that |an| is stochastically dominated by µ∗n

for each n ≥ 0, then Xn

ns0
→ L a.s. where |L| has exponential moments.

Proof. We begin with an easy lemma:

Lemma 1. Let X be a random variable with E(eαX) < +∞ and Y a random
variable following the exponential law E(α) Then, for a = 1

α
logE(eαX1 ), we have

the stochastic domination X ≺ Y + a.

Proof. We just have to prove that for t ∈ R, P(X ≥ t) ≤ P(Y + a ≥ t), or
equivalently P(X ≥ t) ≤ P(Y ≥ t − a). For t ≤ a, we have P(X ≥ t) ≤ 1 = P(Y ≥
t − a). For t ≥ a, the Markov inequality gives

P(X ≥ t) ≤
EeαX

eαt
=

eαa

eαt
= exp(−α(t − a)) = P (Y ≥ t − a).

This completes the proof. �

Now, we have a and α such that for each n ≥ 1

|an| ≺ µ∗n ≺ (δa ∗ E(α))∗n = δna ∗ Γ(n, θ).

Let (Zn)n≥0 be a sequence of independent variables with Zn ∼ Γ(n, θ), where
Γ(a, γ) is the Law with the density

x 7→
γa

Γ(a)
xa−1e−γx

1]0,+∞[(x).

|Xn|
ns0

is stochastically dominated by

M

n
∑

j=0

ja + Zj

(j + 1)s0
,

so for t < 1/α, we have

E(et
|Xn|

ns0 ) ≤ exp(Ma

n+1
∑

j=1

j−s0 )

n
∏

j=0

E exp(
tZj

(j + 1)s0
)

≤ exp(Ma
n+1
∑

j=1

j−s0 )
n

∏

j=0

(1 −
αt

(j + 1)s0
)−j

When j is large enough, (1 − αt
(j+1)s0

)−j ≤ exp( αt
js0−1 ), which gives the existence of

an exponential moment for s0 > 2.
The proof in the case |an| ≺ µ and s0 > 1 is similar.

�
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As an example of domination by µ∗n, we can think about the case where a recur-
sive function called with parameter n requires n simulations with an acceptance-
rejection method. Then, an appears as the sum of n independent variables following
a geometric distribution µ = G(p).
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