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The aim of this note is to provide a Master Theorem for some discrete divide and conquer recurrences:

where the m i 's are integers with m i ≥ 2. The main novelty of this work is there is no assumption of regularity or monotonicity for (an). Then, this result can be applied to various sequences of random variables (an) n≥0 , for example such that sup n≥1 E(|an|) < +∞.

Introduction

Divide-and-conquer methods are widely used in Computer Science. The analysis of the cost of the algorithm naturally leads to divide-and-conquer recurrences. The methods to study these recurrences are popularized as "Master theorems" in the literature of Computer Science. See e.g. the reference books by Cormen et al [START_REF] Thomas | Introduction to Algorithms[END_REF] or Goodrich and Tamassia [START_REF] Michael | Algorithm Design: Foundations, Analysis, and Internet Examples[END_REF].

In the sequel, we consider sequences (X n ) n≥0 that are defined by X 0 = a 0 , then

X n = a n + m j=1 b j X ⌊ n m j
⌋ , [START_REF] Akra | On the solution of linear recurrence equations[END_REF] where the m i 's are integer with m i ≥ 2 and ⌊x⌋ denotes the only n ∈ Z such that x -n ∈ [0, [START_REF] Akra | On the solution of linear recurrence equations[END_REF].

Of course, in Computer Science, a n and X n represent computation times and are therefore positive. However, the case of negative a n and X n can be of theoretical interest.

In the literature of Computer Science, (a n ) is supposed to be deterministic. Nevertheless, in the context of randomized algorithm, eventually involving Monte-Carlo simulation, it is natural to consider the case of a random (a n ) and observe the fluctuations of the computation time.

One of the most general results in the field of Computer Science is due to Akra and Bazzi [START_REF] Akra | On the solution of linear recurrence equations[END_REF]. They do not seek for an exact asymptotic limit, focusing of the order of the fluctuations. Their methods rely on classical real analysis.

The mathematical literature is more focused on exact methods, that rely on generating functions. The first paper in this spirit is Erdős et al [START_REF] Erdős | The asymptotic behavior of a family of sequences[END_REF], which solved the case a n = 0 with the help of renewal equations. Tauberian theorems lead to simpler proofs of their result, see e.g. Choimet and Queffelec [START_REF] Choimet | Twelve landmarks of twentieth-century analysis[END_REF]. Recent results by Drmota and Szpankowski [START_REF] Drmota | A master theorem for discrete divide and conquer recurrences[END_REF]) also rely on Tauberian theorems and some other tools in complex analysis. They request some assumptions of monotonicity.

If one wants to cover the case of a random (a n ), the sequence (a n ) obviously can not be supposed to be monotonic. Quite surprisingly, we did not find in the literature any theorem of this kind, computing an exact limit without making some assumption of monotonicity.

Let us clarify the assumptions: we assume that the b i 's are positive numbers with m j=1 b j > 1, that the m i are integers with m i ≥ 2 and such that there exists j, ℓ with log mj log m ℓ ∈ Q. The rational case, which is not considered here, is also of great interest in Computer Science -see e.g. Roura [START_REF] Roura | Improved master theorems for divide-and-conquer recurrences[END_REF] or Drmota and Szpankowski [START_REF] Drmota | A master theorem for discrete divide and conquer recurrences[END_REF].

It is known that the general growth of (X n ) is governed by the value of the positive root s 0 for the equation

m j=1 b j m -s j = 1.
As said before, the originality of the present paper lies in the assumption on the (a n ): under the assumption that

+∞ n=1 |a n | n s0 < +∞,
we prove that the sequence Xn n s 0 admits a limit L when n tends to infinity and give a fairly simple closed expression for it.

As we will see, this allow to apply our Theorem to a large class of random variables. Then, the limit L is a random variable, which appears as the sum of a random series.

If we specialize to the case where the (a n ) are independent, then one can easily control the random fluctuations of L.

The deterministic Theorem

Theorem 1. Let m ≥ 1, (b 1 , . . . , b m ) be a family of non-negative numbers and (m 1 , . . . , m m ) be a family of integers with m i ≥ 2 and such that • there exists j, ℓ with

log mj log m ℓ ∈ Q; • m j=1 b j > 1.
We denote by s 0 the positive root s 0 for the equation

m j=1 b j m -s j = 1.
Then, there exists a sequence (ℓ j ) j≥0 of positive numbers such that for every sequence

(a n ) n≥0 with +∞ n=1 |a n | n s0 < +∞,
then the sequence (X n ) n≥0 defined by X 0 = a 0 and the recursion (1) satisfies

lim n→+∞ X n n s0 = +∞ j=0 ℓ j a j .
Note that if the sequence (a j ) j≥0 is non-negative and not identically zero, the limit +∞ j=0 ℓ j a j is positive, so we have found the correct speed for the growth of (X n ) n≥0 .

Proof. We denote by L n (a) the value of X n corresponding to the recursion (1) for some sequence a.

The recursion equation. Let n 0 be a non-negative integer and suppose first that a n = 0 for n > n 0 .

For n > n 0 , we have

X(n) = m j=1 b j X(⌊ n mj ⌋). We can choose C such that |X k | ≤ Ck s0 for 0 < k ≤ n 1 = max(n 0 , m 1 , . . . , m m ).
Then, it follows by natural induction that |X k | ≤ Ck s0 for each k ∈ N * . In the sequel, we put X(t) = X(⌊t⌋) to simplify some notation. Now define

φ(s) = s +∞ n0+1 X(t) t s+1 dt (2)
for s ∈ C with Re(s) > s 0 . The recursion Equation leads to

φ(s) = s +∞ n0+1 m j=1 b j X( t mj ) t s+1 dt = s m j=1 b j m -s j +∞ n 0 +1 m j X(t) t s+1 dt =   m j=1 b j m -s j   φ(s) + s m j=1 b j m -s j n0+1 n 0 +1 m j X(t) t s+1 dt. Since | m j=1 b j m -s j | ≤ m j=1 |b j m -s j | = m j=1 b j m -Re(s) j < m j=1 b j m -s0 j = 1,
we can write, for Re(s) > s 0 :

φ(s) = P (s) 1 - m j=1 b j m -s j , with P (s) = s m j=1 b j m -s j n0+1 n 0 +1 m j X(t) t s+1 dt (3)
Tauberian magic. Now, fix a non-negative integer n 0 and suppose that the sequence a = (a n ) n≥0 is a = I n0 with

I n0 i = 1 i≤n0 = 1 if i ≤ n 0 0 else . By natural induction, it is easy to see that (X n ) n≥0 is non-decreasing.
It is also not difficult to see that 1 -m j=1 b j m -s j does not vanish for s ∈ C with Re(s) ≥ s 0 and s = s 0 . Proceeding as in Choimet and Queffelec (see [START_REF] Choimet | Twelve landmarks of twentieth-century analysis[END_REF], section 4), we can note that, for Re(s

) = s 0 Re   m j=1 b j m -s j   = m j=1 b j m -s0 j cos(log m j Im(s)) ≤ m j=1 b j m -s0 j = 1
In fact, the inequality in strict when Im(s) = 0. Overwise, we would have log m j Im(s) ∈ 2πZ for each j, whence log mj log m k ∈ Q for each j, k, which has been excluded.

It follows that for

c = Res s0 φ = P (s 0 ) m j=1 b j m -s0 j log(m j ) , the map s → φ(s) -c s-s0 is holomorphic on {s ∈ C; Re(s) ≥ s 0 }. Now note b(x) = n0<n≤x (X n -X n-1 ). The Abel transformation gives +∞ n=n0+1 X n -X n-1 n s = s +∞ n0+1 b(t) t s+1 dt Since b(t) = X(t) -X n0 , we have +∞ n=n0+1 X n -X n-1 n s = s +∞ n0+1 X(t) t s+1 dt - X n0 (n 0 + 1) s = φ(s) - X n0 (n 0 + 1) s .
Now, we will apply the Ikehara-Newman Theorem for series: Proposition 1. Let (a n ) n≥1 be a sequence of non-negative real numbers, and a, c be positive real numbers. Suppose that the Dirichlet series Φ(s) = +∞ n=1 a n n -s is defined on the open half-plane Re(s) > a and that, more precisely, with A(x) = n≤x a n for x ≥ 0, the following properties are verified: For n 0 = 0, we have

• A(x)x -a is bounded on R + ; • Φ(s) -c s-a has a holomorphic extension G on the closed half-plane Re(s) ≥ a. Then we have A(x) ∼ c a x a as x → +∞. Since (X n ) n≥0 is non-decreasing, the sequence (X n -X n-1 ) n>n0 is non-negative,
ℓ 0 = lim n→+∞ L n (δ 0 ) n s0 = lim n→+∞ L n (I 0 ) n s0 = 1 m j=1 b j m -s0 j log(m j ) m j=1 b j m -s0 j 1 1 m j 1 t s0+1 dt = 1 m j=1 b j m -s0 j log(m j ) m j=1 b j m -s0 j m s0 j -1 s 0
Note that this equality and the related convergence form the result by Erdős et al [START_REF] Erdős | The asymptotic behavior of a family of sequences[END_REF].

Let n 0 ≥ 1. The sequence (δ n0 n ) n≥0 is defined by

δ n0 n = 1 if n = n 0 0 else . Since δ n0 = I n0 -I n0-1 , it follows that L n (δ n0 )n -s0 = L n (I n0 )n -s0 -L n (I n0-1 )n -s0
has a limit when n tends to infinity. Let us denote it by ℓ n0 .

To compute it, take a = δ n0 and consider again the associated φ. From (2), we get ℓ n0 = lim s→s + 0 1 s0 (s -s 0 )φ(s). On the other side, Equation ( 3) is still valid, with

P (s) = s m j=1 b j m -s j n0+1 n 0 +1 m j X(t) t s+1 dt = s m j=1 b j m -s j n0+1 max(n0, n 0 +1 m j ) 1 t s+1 dt, also 1 s 0 (s -s 0 )φ(s) = - s s 0 s 0 -s 1 - m j=1 b j m -s j m j=1 b j m -s j n0+1 max(n0, n 0 +1 m j ) 1 t s+1 dt
and, considering that m j ≥ 2, we get

ℓ n0 = 1 m j=1 b j m -s0 j log(m j ) m j=1 b j m -s0 j n0+1 n0 1 t s0+1 dt.
Thanks to this expression and the previous one, it is clear that ℓ j > 0 holds for each j ≥ 0.

The general case.

For n, j ≥ 0, we note K j n = L n (δ j ). It is obvious that K j n = 0 for n < j and K j j = 1. It easily follows by natural induction on n that 0

≤ K j n ≤ K 0 n K 0 j .
Now, the affine nature of the recursion gives

X n = n j=0 K j n a j
For each j ≥ 0, we have lim n→+∞ K j n n s0 = ℓ j . Also, the K 0 j 's are positive, with lim j→+∞ K 0 j j s0 = ℓ 0 > 0, so there exists M such that 0 < 1 K 0 j ≤ M j s 0 for each j ≥ 1 Then, for each j, n ≥ 1, we have

| K j n a j n s0 | ≤ K 0 n n s0 |a j | K 0 j ≤ |a j | K 0 j ≤ M |a j | j s0
and by the Weierstrass criterion,

lim n→+∞ X n n s0 = +∞ j=0
ℓ j a j .

Application to sequences of random variables

We give below some applications of Theorem 1 to sequences of random variables.

Convergence.

Theorem 2. Assume that the m i 's, the b i 's and s 0 fulfill the assumptions of Theorem 1 and (a n ) is a sequence of random variables. Under each of the following sets of supplementary assumptions, the sequence (X n ) n≥0 defined by X 0 = a 0 and the recursion (1) is such that Xn n s 0 almost surely converges to some random variable, given as the sum of the random series: 

L = +∞ j=0 ℓ j a j . (A)
m j=1 bj m 2 j > 1 implies that s 0 > 2. We fix η > 1 with s 0 -η > 1. Then P(|a n | > n η ) = O(n -η ) and +∞ n=1 P(|a n | > n η
) < +∞, so by the Borel-Cantelli Lemma, for almost every ω, there exists n 0 (ω) with |a n (ω)| ≤ n η for n ≥ n 0 (ω), which gives the convergence of n≥1 |an| n s 0 and our Master Theorem still applies.

3.2. Non-vanishing limit. We have already noticed that the limit does not vanish when the a j are non-negative. In the case of random independent a n , it is very unlikely that the limit is null, even for signed variables. Theorem 3. Assume that the a i 's, m i 's, the b i 's and s 0 fulfill the assumptions of Theorem 2 and also that (a n ) is a sequence of independent random variables, with at least one j 0 ≥ 0 such that a j is non-atomic. Then, the limit L = +∞ j=0 ℓ j a j is non-atomic, and particularly P(L = 0) = 0.

Proof. By independence, the characteristic function of L satisfies

∀t ∈ R |φ L (t)| = +∞ j=0 |φ ℓj aj (t)| ≤ |φ ℓj 0 aj 0 (t)|. Therefore lim T →+∞ 1 2T T -T |φ L (t)| 2 dt ≤ lim T →+∞ 1 2T T -T |φ ℓ0aj 0 (t)| 2 dt = 0,
which implies that L is non-atomic (see e.g. Durrett [START_REF] Durrett | Probability-theory and examples[END_REF], section 3.3).

Exponential moments.

Theorem 4. Assume that the m i 's, the b i 's and s 0 fulfill the assumptions of Theorem 1 and (a n ) is a sequence of independent random variables. The sequence (X n ) n≥0 is defined by X 0 = a 0 and the recursion (1). Proof. We just have to prove that for t ∈ R, P(X ≥ t) ≤ P(Y + a ≥ t), or equivalently P(X ≥ t) ≤ P(Y ≥ t -a). For t ≤ a, we have P(X ≥ t) ≤ 1 = P(Y ≥ t -a). For t ≥ a, the Markov inequality gives P(X ≥ t) ≤

Ee αX e αt = e αa e αt = exp(-α(t -a)) = P (Y ≥ t -a). This completes the proof. Now, we have a and α such that for each n ≥ 1

|a n | ≺ µ * n ≺ (δ a * E(α)) * n = δ na * Γ(n, θ).
Let (Z n ) n≥0 be a sequence of independent variables with Z n ∼ Γ(n, θ), where Γ(a, γ) is the Law with the density x → γ a Γ(a)

x a-1 e -γx 1 ]0,+∞[ (x). (1 -αt (j + 1) s0 ) -j When j is large enough, (1 -αt (j+1) s 0 ) -j ≤ exp( αt j s 0 -1 ), which gives the existence of an exponential moment for s 0 > 2.

The proof in the case |a n | ≺ µ and s 0 > 1 is similar.

As an example of domination by µ * n , we can think about the case where a recursive function called with parameter n requires n simulations with an acceptancerejection method. Then, a n appears as the sum of n independent variables following a geometric distribution µ = G(p).

  so the Wiener-Ikehara Theorem for series applies: since b(t) = O(t s0 ) when t → +∞, we get b(x) ∼ c s0 x s0 ,so lim n→+∞ L n (I n0 )

> 1 2 j> 1

 121 and the (a n ) are integrable random variables with C = sup n≥1 E|a n | < +∞. and the a n are random variables following the Cauchy C(0, 1) Law. Proof. (A) the condition m j=1 bj mj > 1 implies that s 0 > 1. We have E( +∞ n=1 |an| n s 0 ) ≤ Cζ(s 0 ) < +∞, so +∞ n=1 |an| n s 0 < +∞ almost surely, which gives the almost sure behavior of Xn n s 0 . (B) the condition

|Xn| n s 0

 0 is stochastically dominated byM n j=0 ja + Z j (j + 1) s0 , so for t < 1/α, we have E(e t |Xn | n s 0 ) ≤ exp(M a

•

  If there exists a distribution µ with exponential moments such that |a n | is stochastically dominated by µ * n for each n ≥ 0, then |X n | has exponential moments for each n. with exponential moments such that |a n | is stochastically dominated by µ * n for each n ≥ 0, then Xn n s 0 → L a.s. where |L| has exponential moments. Proof. We begin an easy lemma: Lemma 1. Let X be a random variable with E(e αX ) < +∞ and Y a random variable following the exponential law E(α) Then, for a = 1 α log E(e αX1 ), we have the stochastic domination X ≺ Y + a.

	• If s 0 > 1 (or equivalently m j=1	bj mj > 1) and there exists a distribution µ
	with exponential moments such that |a n | is stochastically dominated by µ
	for each n ≥ 0, then Xn n s 0 → L a.s. where |L| has exponential moments. • If s 0 > 2 (or equivalently m j=1 bj j m 2 > 1) and there exists a distribution µ