Hypocoercivity of linear kinetic equations via Harris's Theorem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Hypocoercivity of linear kinetic equations via Harris's Theorem

Résumé

We study convergence to equilibrium of the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus (x, v) ∈ T d × R d or on the whole space (x, v) ∈ R d × R d with a confining potential. We present explicit convergence results in total variation or weighted total variation norms (alternatively L 1 or weighted L 1 norms). The convergence rates are exponential when the equations are posed on the torus, or with a confining potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic potentials considered. We use a method from the theory of Markov processes known as Harris's Theorem.
Fichier principal
Vignette du fichier
2019-07-kinetic_Harris (1).pdf (528.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02049210 , version 1 (26-02-2019)
hal-02049210 , version 2 (22-07-2019)

Identifiants

Citer

José Cañizo, Chuqi Cao, Josephine Evans, Havva Yoldaş. Hypocoercivity of linear kinetic equations via Harris's Theorem. 2019. ⟨hal-02049210v2⟩
107 Consultations
351 Téléchargements

Altmetric

Partager

More