On a class of vertices of the core - Archive ouverte HAL
Article Dans Une Revue Games and Economic Behavior Année : 2018

On a class of vertices of the core

Résumé

It is known that for supermodular TU-games, the vertices of the core are the marginal vectors, and this result remains true for games where the set of feasible coalitions is a distributive lattice. Such games are induced by a hierarchy (partial order) on players. We propose a larger class of vertices for games on distributive lattices, called min-max vertices, obtained by minimizing or maximizing in a given order the coordinates of a core element. We give a simple formula which does not need to solve an optimization problem to compute these vertices, valid for connected hierarchies and for the general case under some restrictions. We find under which conditions two different orders induce the same vertex for every game, and show that there exist balanced games whose core has vertices which are not min-max vertices if and only if n > 4.
Fichier principal
Vignette du fichier
vertices-core3.pdf (253.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02043275 , version 1 (20-02-2019)

Identifiants

Citer

Michel Grabisch, Peter Sudhölter. On a class of vertices of the core. Games and Economic Behavior, 2018, 108, pp.541-557. ⟨10.1016/j.geb.2017.09.001⟩. ⟨hal-02043275⟩
95 Consultations
206 Téléchargements

Altmetric

Partager

More