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Abstract

It is known that for supermodular TU-games, the vertices of the core are the
marginal vectors, and this result remains true for games where the set of feasible
coalitions is a distributive lattice. Such games are induced by a hierarchy (partial
order) on players. We propose a larger class of vertices for games on distributive
lattices, called min-max vertices, obtained by minimizing or maximizing in a given
order the coordinates of a core element. We give a simple formula which does not
need to solve an optimization problem to compute these vertices, valid for connected
hierarchies and for the general case under some restrictions. We find under which
conditions two different orders induce the same vertex for every game, and show
that there exist balanced games whose core has vertices which are not min-max
vertices if and only if n > 4.

Keywords: TU games, restricted cooperation, game with precedence constraints,
core, vertex

JEL Classification: C71

1 Introduction

In the seminal paper of Shapley (1971) was undertaken probably the first study of the
geometric properties of the core of TU-games. In particular, it was established that the
set of marginal vectors coincides with the set of vertices of the core when the game is
convex. This paper was the starting point of numerous publications on the core and
its variants, studying its geometric structure (vertices, facets, since it is a closed convex
polytope) for various classes of games (in particular, the assignment games of Shapley
and Shubik (1972)).

∗Corresponding author.
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In a parallel way, it was found that the classical view of TU-games, defined as set
functions on the power set of the set of players, was too narrow, and the idea of restricted
cooperation (i.e., not any coalition can form) germinated in several papers, most notably
Aumann and Drèze (1974); Myerson (1977); Owen (1977) and Faigle (1989), who coined
the term “restricted cooperation” and precisely studied the core of such games. Many
algebraic structures were proposed for the set of feasible coalitions, e.g., (distributive)
lattices, antimatroids, convex geometries, etc. It turned out that the structure of the
core became much more complex to study, in particular due to the fact that the core on
such games may become unbounded (see a survey in Grabisch (2013)). However, as shown
by Derks and Gilles (1995), the main result established in Shapley (1971) remains true
for games on distributive lattices: for supermodular games, the set of marginal vectors
still coincides with the set of extreme points of the core.

The question addressed in this paper arises naturally from the last result: What if
the game is not supermodular? Is it possible to know all of its vertices in an analytical
form? The question has puzzled many researchers, and so far only partial answers have
been obtained, and only in the case of classical TU-games, i.e., without restriction on
cooperation. Significant contributions have been done in particular by Núñez and Rafels
(1998), and Tijs (2005). In the former work, a family of vertices is obtained, which is
shown to cover all vertices of the core when the game is almost convex (i.e., satisfying the
supermodularity condition except when the grand coalition is involved). Later, Núñez
and Rafels (2003) have shown that this family of vertices is also exhaustive for assignment
games, while Trudeau and Vidal-Puga (2015) have shown that the same result holds for
minimum cost spanning tree games. In the work of Tijs, another family of vertices is
proposed, called leximals, which is leading to the concept of lexicore and the Alexia
value.

The present paper lies in the continuity of these works, showing that the two previous
families have close links, proposing a wider class of vertices (unfortunately, still not
exhaustive in all cases), and most importantly, establishing results in the general context
of games on distributive lattices. Such a class of games is of considerable interest, because
it has a very simple interpretation: the set of feasible coalitions is induced by a hierarchy
(partial order) on the set of players, and feasible coalitions correspond to subsets of players
where every subordinate of a member must be present. In the absence of hierarchy, the
classical case is recovered.

We summarize the main achievements of the paper. We first give a tight upper
bound of the number of vertices of the core, using an argument of Derks and Kuipers
(2002). Then we introduce the family of min-max vertices, obtained by minimizing or
maximizing in a given order the coordinates of a core element. Minimization (respectively,
maximization) is performed if the considered coordinate (player) is a minimal element
(respectively, a maximal element) in the sub-hierarchy formed by the remaining players.
We prove that these are indeed vertices of the core (Theorem 2), and that in the case of
supermodular games, we recover all marginal vectors (Corollary 1). The case of connected
hierarchies reveals to be particularly simple, because min-max vertices take a simple form
and can be computed directly without solving an optimization problem (Theorem 5). In
the general case, a similar computation can be done provided some conditions are satisfied
(Formula (15)). Two different orders may yield the same min-max vertex for every game.
We show in Theorem 7 that this arises if and only if one of the orders can be obtained
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from the other one by a sequence of switches exchanging minimal and maximal elements.
Lastly, we investigate the limits of the min-max approach to find vertices, and show that
there exist balanced games whose core has vertices which are not min-max vertices if and
only if n > 4 (Theorem 8).

The paper is organized as follows. Section 2 introduces the necessary material for
games on distributive lattices and cores of such games, which are unbounded in general.
We show that the structure of the convex hull of the vertices of the core of games on
distributive lattices is more complex than the structure of the core of ordinary games
(Proposition 1). Section 3 gives an upper bound of the number of vertices of the core.
Section 4 is the main section of the paper, introducing and studying min-max vertices.
Section 5 investigates under which condition orders yield identical min-max vertices.
Examples illustrating the main results and concepts are given in Section 6, together
with a practical summary of how to proceed. The limits of the min-max approach are
investigated in Section 7, and the paper finishes with Section 8 detailing the past literature
on the topic.

2 Notation, definitions and preliminaries

A partially ordered set or poset (P,�) is a set P endowed with a partial order �, i.e., a
reflexive, antisymmetric and transitive binary relation. A poset (P,�) is a lattice if every
two elements x, y ∈ P have a supremum and an infimum, denoted respectively by ∨,∧.
The lattice is distributive if ∨,∧ obey distributivity. As usual, x ≺ y means x � y and
x 6= y. We say that x covers y, denoted by y ≺· x, if y ≺ x and there is no z ∈ P such
that y ≺ z ≺ x. A chain in (P,�) is a sequence x0, . . . , xp such that x0 ≺ · · · ≺ xp, and
its length is p. The height of (P,�) is the length of a longest chain in (P,�).

Throughout the paper we consider posets (N,�), where N ⊆ U is finite, with |N | = n,
and U is a set that contains {1, . . . , 5}. The set N can be considered as a set of play-
ers, agents, and � as expressing precedence constraints or hierarchical relations among
players. For this reason, we will often refer to (N,�) as a hierarchy.

Subsets of N are called coalitions, and a coalition S is said to be feasible if i ∈ S
and j � i imply j ∈ S. In other words, the feasible coalitions are the downsets of the
poset (N,�), and we denote by O(N,�) the set of downsets of (N,�). It is well known
that (O(N,�),⊆) is a distributive lattice of height n, whose infimum and supremum are
set intersection and union, respectively. By Birkhoff’s (1933) Theorem, the converse also
holds: any distributive lattice of height n is isomorphic to the set of downsets of some
poset of n elements.

A (TU) game with precedence constraints (Faigle and Kern, 1992) is a triple (N,�, v)
where (N,�) is a poset and v : O(N,�) → R satisfies v(∅) = 0. The set O(N,�) of
feasible coalitions is denoted by F . Classical TU-games correspond to the case F = 2N ,
i.e., the partial order � is empty. We denote by Γ the set of games (N,�, v), N ⊆ U,
with precedence constraints.

We say that (N,�) is connected if the Hasse diagram of (N,�), seen as a graph, is
connected in the sense of graph theory, i.e., if for any two distinct i, j ∈ N , there is a
sequence of elements i = j1, . . . , jm = j in N such that either jℓ ≺· jℓ+1 or jℓ+1 ≺· jℓ for
every ℓ = 1, . . . , m− 1. In this case, we speak of a connected hierarchy.
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For any x ∈ RN , we use the shorthand x(S) =
∑

i∈S xi for any nonempty S ∈ 2N .
The set of feasible payoff vectors and the set of preimputations of a game (N,�, v) are
respectively defined by

X∗(N,�, v) = {x ∈ RN : x(N) 6 v(N)}, X(N,�, v) = {x ∈ RN : x(N) = v(N)}.

The core of a game (N,�, v) is the set defined by

C(N,�, v) = {x ∈ X(N,�, v) : x(S) > v(S), ∀S ∈ F}.

A game has a nonempty core if and only if it is balanced (Faigle, 1989). Whenever
nonempty, the core is a closed convex pointed polyhedron (Derks and Gilles, 1995), i.e.,
it has the following form:

C(N,�, v) = conv(ext(C(N,�, v))) + C(N,�, 0), (1)

where “conv” indicates the convex hull of a set of points, “ext” the extreme points (or
vertices) of a convex set, “+” is the Minkovski sum, and C(N,�, 0) is the conic part
(recession cone) of C(N,�, v), obtained by replacing v by the null game. It has the
following form (Derks and Gilles, 1995; Tomizawa, 1983):

C(N,�, 0) = cone({1{i} − 1{j} : i, j ∈ N, i ≺· j}), (2)

where “cone” indicates the convex cone containing 0 ∈ RN and the conic combination
of a set of points, and, for any S ⊆ N , 1S ∈ RN is the characteristic function of S. It
follows that the core is bounded if and only if � is empty.

A game (N,�, v) is supermodular if

v(S ∪ T ) + v(S ∩ T ) > v(S) + v(T )

for every S, T ∈ F . The structure of the core is completely known for supermodular
games. Let us denote by Π(F) the set of total orders π on N , i.e., bijective map-
pings {1, . . . , n} −→ N , which are compatible with F , i.e., such that the sets ∅ =
Bπ

0 , B
π
1 , . . . , B

π
n = N with Bπ

i = {π(1), . . . , π(i)} form a maximal chain in F (these or-
ders are the linear extensions of �). For any π ∈ Π(F), we define its associated marginal
vector mπ,v ∈ RN by

mπ,v

π(i) = v(Bπ
i )− v(Bπ

i−1), ∀i ∈ {1, . . . , n}.

Theorem 1. (Fujishige and Tomizawa, 1983; Derks and Gilles, 1995) The game (N,�, v)
is supermodular if and only if every marginal vector mπ,v with π ∈ Π(F) is a vertex of
C(N,�, v).

Let S ⊆ N . For any x ∈ RN , xS denotes the vector of RS which is the restriction
of x to S. Considering the poset (S,�) with the slight abuse of notation that � is now
restricted to S, the induced distributive lattice is O(S,�) =: F(S) = {T ∩ S : T ∈ F}.
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Consider a game (N,�, v) on F , a set ∅ 6= S ⊆ N and a vector xN\S ∈ RN\S. The
reduced game w.r.t. xN\S and S is the game (S,�, vS,xN\S

) defined by Davis and Maschler
(1965) as follows:

vS,xN\S
(T ) =











v(N)− x(N \ S), if T = S

0, if T = ∅

max{v(T ∪R)− x(R) : R ⊆ N \ S, T ∪R ∈ F}, if T ∈ F(S) \ {∅, S}.
(3)

Note in particular, if S = N \ {j} for some j ∈ N , then vS,xj
denotes the coalition

function of the reduced game w.r.t. N \ {j} and xj ∈ R{j}. It is useful to note the
following transitivity property of reducing:

(vS,xN\S
)T,xS\T

= vT,xN\T
. (4)

for any T ⊂ S ⊆ N and any x ∈ RN .
A solution on Γ′ ⊆ Γ is a correspondence σ that assigns to each (N,�, v) ∈ Γ′ a

subset σ(N,�, v) of X∗(N,�, v). A solution σ satisfies:

(i) The reduced game property (RGP) if for every (N,�, v) ∈ Γ′, every ∅ 6= S ⊆ N and
every x ∈ σ(N,�, v), we have (S,�, vS,xN\S

) ∈ Γ′ and xS ∈ σ(S,�, vS,xN\S
);

(ii) The reconfirmation property (RCP) if for every (N,�, v) ∈ Γ′, every ∅ 6= S ⊆ N
and every x ∈ σ(N,�, v), the following condition holds: If (S,�, vS,xN\S

) ∈ Γ′ and
yS ∈ σ(S,�, vS,xN\S

), then (yS, xN\S) ∈ σ(N,�, v).

By Remark 4.2 in Grabisch and Sudhölter (2012), as in the classical case F = 2N , the
core satisfies RGP and RCP on any Γ′ ⊆ Γ, with the restriction for the former that Γ′ is
closed under taking reductions w.r.t. core elements.

The following notions are useful (Grabisch and Sudhölter, 2016). We consider R(N,�)

(denoted simply by R if no ambiguity occurs) the partition of N whose blocks are the
connected components of (N,�) and define the intermediate game (R, vR), with vR :
2R → R a classical TU-game defined by:

vR(T ) = v(
⋃

T ) (T ⊆ R).

We denote by F0 the set of feasible coalitions which are not unions of blocks of R, i.e.,
F0 ⊆ F and F \ F0 = {

⋃

T : T ⊆ R}.

Before entering the main topic, we show that there is interest in studying the core of
games with precedence constraints, because the convex part of the core of such games has
a richer structure than the core of classical games. Put otherwise, there exist games with
precedence constraints such that the convex part of their core does not coincide with any
core of a classical game.

Let (N, v) be an exact TU game, i.e., for every subset S of N , there exists a core
element such that x(S) = v(S). We then have

v =
∧

ext(C(N, v)), (5)
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i.e., v(S) = min{x(S) : x ∈ ext(C(N, v))} for all S ⊆ N . We call (N, v) oxytrophic
(Rosenmüller, 1999) if none of the extreme points of the core is redundant in the repre-
sentation (5) of v. Let v =

∧

{(3, 4, 0, 0), (0, 0, 2, 5)} (Example 3.3 of the aforementioned
book). Then it can be checked that

ext(C(N, v)) = {(3, 4, 0, 0), (0, 0, 2, 5), (2, 4, 0, 1), (0, 2, 2, 3), (2, 2, 0, 3), (3, 2, 0, 2),

(1, 0, 2, 4), (1, 2, 2, 2)}

so that (N, v) is not oxytrophic.
We now consider (N,�) defined by 1 ≺ 2, 3 ≺ 2, and 3 ≺ 4 (see Figure 1).

1

2

3

4

Figure 1: Example of a hierarchy with 4 players, referred to as the “N” example

Then

ext(C(N,�, v)) = {(3, 4, 0, 0), (0, 0, 2, 5), (2, 4, 0, 1), (0, 4, 2, 1), (2, 0, 0, 5)},

i.e., vertices appear here that are not in the core of the classical game. Now, let (N,w)
be the classical game defined as w =

∧

ext(C(N,�, v)). It turns out that (N,w) is
not oxytrophic. Indeed (3, 0, 0, 4) ∈ ext(C(N,w)), hence C(N,w) ) conv(ext(C(N,�
, v))). However, any classical game (N, u) such that ext(C(N,�, v)) ⊆ C(N, u) satisfies
u 6 w, hence C(N,w) ⊆ C(N, u), so that finally conv(ext(C(N,�, v))) ( C(N, u).
Consequently, we have shown the following proposition.

Proposition 1. There exists a TU game (N,�, v) with a connected hierarchy such that
the convex hull of the vertices of its core does not coincide with the core of any classical
TU game.

3 An upper bound for the number of vertices

Let (N,�, v) ∈ Γ, denote F = O(N,�), and introduce κ(F) = |Π(F)|, QF = conv{1S :
S ∈ F}, and, for any π ∈ Π(2N), Qπ = {x ∈ [0, 1]N : xπ(1) ≥ · · · ≥ xπ(n)}. Then the
interior of the intersection of any two of the Qπ is empty, their union is the unit cube,
and the volumes of all of them are identical so that we conclude that the volume of Qπ

is V (Qπ) =
1
n!
. Moreover, we claim that

QF =
⋃

π∈Π(F)

Qπ.

Indeed, it is a well-known fact that each Qπ is an n-dimensional simplex, and its
vertices are the n + 1 characteristic vectors 1Bπ

0
, 1Bπ

1
, . . . , 1Bπ

n
. Therefore, we have Qπ =
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conv{1Bπ
0
, 1Bπ

1
, . . . , 1Bπ

n
}. Since any maximal chain in F is of the form Bπ

0 , B
π
1 , . . . , B

π
n for

some π, we have

F =
⋃

π∈Π(F)

n
⋃

i=0

Bπ
i ,

which proves the desired result.
Our claim shows that

V (QF) = V





⋃

π∈Π(F)

Qπ



 =
∑

π∈Π(F)

V (Qπ) =
κ(F)

n!
.

Now, according to Theorem 4.4 of Derks and Kuipers (2002), the number of vertices of
C(N,�, v) is not larger than n!V (QF ) so that we have deduced the following proposition.

Proposition 2. For any game (N,�, v) with precedence constraints, the number of
vertices of its core is not larger than the number of linear extensions of (N,�), i.e.,
C(N,�, v) has at most |Π (O(N,�, v))| vertices.

By Theorem 1, the vertices of the core of a supermodular game are the κ marginal
vectors of the game. The upper bound is then attained, provided they are all different
(e.g., when the game is strictly supermodular (Grabisch and Sudhölter, 2014)).

4 Min-max vertices

This section presents the construction of our proposed family of vertices. We begin by
presenting informally the main idea underlying this family.

4.1 The main idea

Consider a balanced game (N,�, v) and select some element i ∈ N . If i is minimal in
(N,�), then {i} is a feasible coalition, so that any core element x satisfies xi > v({i}).
Hence xi is bounded from below by v({i}). If i is a maximal element in (N,�), then
N \ {i} is a feasible coalition, therefore any core element x satisfies

xi = x(N)− x(N \ {i}) 6 v(N)− v(N \ {i}),

which provides an upper bound for xi. Suppose now that i is neither maximal nor
minimal. Then there exist j, k ∈ N such that j ≺· i ≺· k. By (2), 1{j} − 1{i} and
1{i} − 1{k} are both extremal rays of the recession cone, so that xi is neither bounded
from below nor from above.

Consider then a minimal or maximal element i in (N,�), and fix xi to be accordingly
the lower or upper bound. Supposing some core element has value xi on the ith coordi-
nate, by the reconfirmation property of the core, it suffices to find xN\{i} in the core of
the reduced game vN\{i},xi

(which is nonempty by the reduced game property) to ensure
that x = (xi, xN\{i}) is a core element.

The basic algorithm is then the following:
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(i) Choose some order π on the players such that π(i) is either minimal or maximal in
the poset ({π(i), . . . , π(n)},�) for every i = 1, . . . , n;

(ii) Starting from player π(1), do successively for i = 1, . . . , n:

(a) Set xπ(i) to its lower or upper bound depending whether i is minimal or max-
imal.

(b) Eliminate player π(i) and update the game by taking the reduced game over
{π(i+ 1), . . . , π(n)}.

Note that the algorithm will end up with a core element if at each step there exists a
core element with coordinate attaining the lower or upper bound. Hence, the key point
of this procedure will be to find valid bounds for core elements.

4.2 Min-max vertices

We formalize and develop the previous ideas. Let (N,�, v) be a game with precedence
constraints, S ⊆ N , and xS ∈ RS. We say that xS is core extendable (w.r.t. (N,�, v)) if
there exists z ∈ C(N,�, v) such that zS = xS.

Lemma 1. Let (N,�, v) be a game with precedence constraints and i ∈ N .

(i) Let n > 2. Then xi ∈ R{i} is core extendable if and only if

(a) xi > v({i}) if i is a minimal element of (N,�),

(b) xi 6 v(N)− v(N \ {i}) if i is a maximal element of (N,�), and

(c) (N \ {i},�, vN\{i},xi
) is balanced.

(ii) Assume that (N,�, v) is balanced. The set {xi : x ∈ C(N,�, v)} is convex and
bounded

(a) from below if and only if i is a minimal element of (N,�);

(b) from above if and only if i is a maximal element of (N,�).

(iii) Let S, T ⊆ N such that S∩T = ∅ and S 6= N . Then xS∪T ∈ RS∪T is core extendable
if and only if xS is core extendable and xT is core extendable w.r.t. the reduced
game (N \ S,�, vN\S,xS

).

Proof. (i) Suppose x ∈ C(N,�, v). By RGP, xN\{i} ∈ C(N \ {i},�, vN\{i},xi
) so that (c)

is satisfied. Moreover, if i is minimal, then {i} ∈ F := O(N,�) implying (a). Similarly,
if i is maximal, then N \ {i} ∈ F . Hence, x(N \ {i}) = v(N) − xi > v(N \ {i}) so
that (b) follows. For the if-part, assume that xi satisfies (a) – (c). Then there exists
xN\{i} ∈ C(N \ {i},�, vN\{i},xi

) and it suffices to prove that x ∈ C(N,�, v). Let S ∈ F .
If S 6= N \ {i} and S ∩ (N \ {i}) 6= ∅, then x(S \ {i}) > vN\{i},xi

(S \ {i}) by (c), which
implies x(S) > v(S). In particular, (c) also implies x ∈ X(N,�, v). If S = {i}, then i is
minimal and x(S) > v(S) by (a), and if S = N \ {i}, then i is maximal and x(S) > v(S)
by (b).

(ii) This is an immediate consequence of (1) and (2).
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(iii) Let (N \ S,�, vN\S,xS
) = (N ′,�, v′). Now, if xS∪T is core extendable, then

obviously xS is, and there exists z ∈ C(N,�, v) such that zS∪T = xS∪T . By RGP,
zN ′ ∈ C(N ′,�, v′) so that zT = xT is core extendable w.r.t. (N ′,�, v′).
Conversely, if xS is core extendable and xT is core extendable w.r.t. (N ′,�, v′), then
there exist y ∈ C(N,�, v) and y′N ′ ∈ C(N ′,�, v′) such that yS = xS and y′T = xT . Let
x = (xS, xN ′) ∈ RN be defined by xN ′ = y′N ′. Then x(N) = v(N) and, hence, it suffices to
show that x(P ) > v(P ) for each P ∈ O(N,�). If P ∩(N \S) 6= ∅ and S∪P 6= N , then, by
(3), v(P )−x(P ) 6 v′(P ∩N ′)− y′(P ∩N ′) 6 0 because y′ ∈ C(N ′,�, v′). If P ⊆ S, then
v(P )− x(P ) = v(P )− xS(P ) 6 0 because xS is core extendable. Finally, if N \ S ⊆ P ,
then x(P ) = x(N \ S) + y(P ∩ S) = y(P ) > v(P ) because y(N) = x(N) = v(N) and
y ∈ C(N,�, v) so that the proof is finished.

For any total order π on N , we define

Aπ
i = {π(i), . . . , π(n)} = N \Bπ

i−1

for i = 1, . . . , n. A total order π on N is admissible if π(i) is either a minimal or a
maximal element in the poset (Aπ

i ,�) for all i = 1, . . . , n. Note that any linear extension
of (N,�) is an admissible order.

A decision vector is any vector in {−1, 1}N . Given an admissible order π and a
decision vector d, we say that (π, d) is a consistent pair if the following conditions are
satisfied for i = 1, . . . , n:

di = −1 =⇒ π(i) is minimal in the poset (Aπ
i ,�); (6)

di = 1 =⇒ π(i) is maximal in the poset (Aπ
i ,�). (7)

Actually, d is only useful for breaking ties, i.e., when π(i) happens to be both minimal and
maximal in (Aπ

i ,�). Note that this situation never happens when (Aπ
i ,�) is connected,

unless i = n.
Assume (N,�, v) is balanced. For any consistent pair (π, d), recursively define the

vector x = xπ,d,v ∈ RN as follows:

xπ(i) = di ·max
{

zπ(i)di : z ∈ C(Aπ
i ,�, vAπ

i ,xBπ
i−1

)
}

for all i = 1, . . . , n. (8)

Theorem 2. Let (N,�, v) be a balanced game, π be an admissible order of N , and d a
decision vector. If (π, d) is consistent, then the vector xπ,d,v given by (8) is well-defined,
and it is a vertex of C(N,�, v).

Proof. For i = 1, . . . , n denote (Ai,�, vi) = (Aπ
i ,�, vAπ

i ,xBπ
i−1

) and xπ(i) = xπ,d,v

π(i) .

Claim 1: For each i = 1, . . . , n, (Ai,�, vi) is balanced, and xπ(i) is well-defined.
We show Claim 1 by induction on i. As (A1,�, v1) = (N,�, v), part (ii) of Lemma 1
shows our claim for i = 1. Assume now that Claim 1 is valid for some i < n. Then xπ(i)

is core extendable w.r.t. (Ai,�, vi) so that, by RGP,
(

Ai+1,�, (vi)Ai+1,xπ(i)

)

is balanced.

However, by the transitivity of reducing (4), (vi)Ai+1,xπ(i)
= vi+1 so that Claim 1 is shown

for i+ 1 by Lemma 1 (ii).
Claim 2: For each i = 1, . . . , n, xBπ

i
is core extendable.

Note that xBπ
1
= xπ(1) so that Claim 1 implies that Claim 2 is valid for i = 1. Proceeding

9



by induction we assume now that xBπ
i
is core extendable for some i < n. By Claim

1, xπ(i+1) is core extendable w.r.t. (Ai+1,�, vi+1) so that, by Lemma 1 (iii) applied to
S = Bπ

i and T = {π(i+ 1)}, xBπ
i+1

is core extendable.
Note that, by Claim 2 applied to i = n, we have x ∈ C(N,�, v). Hence, it remains

to show that x is a vertex of the core. Let y, z ∈ C(N,� v), y 6= x and 0 6 λ < 1 such
that x = λy + (1 − λ)z. Let i ∈ {1, . . . , n} be minimal such that yπ(i) 6= xπ(i). Hence,
zBπ

i−1
= xBπ

i−1
as well. By Lemma 1 (iii) applied to S = Bπ

i−1 and T = {π(i)}, yπ(i) and
zπ(i) are core extendable w.r.t. (Ai,�, vi). By (8), yπ(i) < xπ(i)di and zπ(i) 6 xπ(i)di, hence
z = x and λ = 0 which finishes the proof.

Remark 1. (i) We see that by Claim 1 of the proof, each reduced game (Aπ
i ,�, vAπ

i ,xBπ
i−1

)

is balanced. It follows that the above theorem can be applied to any such reduced
game, and by the transitivity of reducing (4), we obtain that xπ,d,v

Aπ
i

is a vertex of

C(Aπ
i ,�, vAπ

i ,xBπ
i−1

) for any i = 1, . . . , n.

(ii) Another remarkable property of x = xπ,d,v is the following:

xπ(i) = di ·max
{

zπ(i)di : z ∈ C(N,�, v), zBπ
i−1

= xBπ
i−1

}

for all i = 1, . . . , n. (9)

Indeed, letting (Ai,�, vi) = (Aπ
i ,�, vAπ

i ,xBπ
i−1

) and Bi = Bπ
i , z ∈ C(Ai,�, vi) is

equivalent to z(Ai) = vi(Ai) = v(N)−xBi−1
and z(S) > vi(S) for every S ∈ F(Ai).

The second assertion is equivalent to z(S) > v(S ∪R)− x(R) for every S ∈ F(Ai)
and every R ∈ F(Bi). Therefore z ∈ C(Ai,�, vi) is equivalent to z ∈ C(N,�, v),
zBi

= xBi
.

Based on this result, we call min-max vertex of C(N,�, v) any vector xπ,d,v where
(π, d) is a consistent pair. The computation of min-max vertices depends then if we are
able to find an explicit expression for the bounds of core elements. We will show that in
two important particular cases studied in Sections 4.3 and 4.4, this computation is easy
and corresponds to what we call hereafter the induced vector.

Given a consistent pair (π, d) (recall that π is an admissible order), and a game
(N,�, v), we define the induced vector yπ,d,v ∈ RN recursively on i = 1, . . . , n with
vi = v

Aπ
i ,y

π,d,v

Bπ
i−1

as follows:

yπ,d,v
π(i) =

{

vi({π(i)}), if di = −1,

vi(A
π
i )− vi(A

π
i+1), if di = 1,

(i = 1, . . . , n). (10)

Note that the induced vector corresponds to the intuitive bounds given in our informal
presentation in Section 4.1. Contrarily to xπ,d,v, it is not always a core element, however
the following result holds.

Theorem 3. Let (π, d) be a consistent pair and (N,�, v) be a game. Then

(i) Each game (Aπ
i ,�, v

Aπ
i ,y

π,d,v

Bπ
i−1

) is balanced for i = 1, . . . , n if and only if yπ,d,v is a

core element;

(ii) yπ,d,v is a core element if and only if yπ,d,v = xπ,d,v, i.e., it is a min-max vertex.

10



Proof. We fix (π, d) and v and denote for simplicity Ai = Aπ
i , vi = v

Aπ
i
,y

π,d,v

Bπ
i−1

and y =

yπ,d,v, x = xπ,d,v.

(i) We show the “only if” part. By definition of yπ(1), the assumption of balancedness
and Lemma 1 (i), yπ(1) is core extendable. Proceeding by induction, suppose that
yBπ

i
is core extendable for some i < n. Then, by Lemma 1 (iii), yBπ

i+1
is core

extendable iff yBπ
i
is and yπ(i+1) is core extendable w.r.t. vi+1. Now, the last

assertion holds by Lemma 1 (i), by definition of yπ(i+1) and the assumption of
balancedness.

Conversely, we show by induction that yAi
∈ C(Ai,�, vi). The property is trivially

true for i = 1. Assume it is true for some i < n and let us prove it for i + 1. We
have vi+1(Ai+1) = v(N)− y(Bπ

i ) = y(Ai+1) since y is a core element. Now, for any
S ∈ F(Ai+1), we have

vi+1(S) = v(S ∪ T )− y(T ) 6 y(S ∪ T )− y(T ) = y(S)

for some adequate T ⊆ Bπ
i , which proves the claim.

(ii) We have only to show the “only if” part. By definition of x and since y is a core
element, we have dyπ(1) 6 dxπ(1). On the other hand, since x is a core element, it
satisfies xπ(1) > v({π(1)}) if π(1) is minimal, or xπ(1) 6 v(N) − v(N \ {π(1)}) if
π(1) is maximal, so that in any case yπ(1) = xπ(1). Proceeding by induction, suppose
that yBπ

i
= xBπ

i
for some i < n. We know from (i) that yAi+1

∈ C(Ai+1,�, vi+1).
Hence, we deduce that dyπ(i+1) 6 dxπ(i+1), and equality holds because xπ(i+1) is
core-extendable w.r.t. vi+1.

4.3 The case of supermodular games

For any i ∈ {1, . . . , n} denote T π,d
i = {π(j) : j ∈ {1, . . . , i− 1}, dj = −1}.

Theorem 4. Let (N,�, v) be supermodular and let (π, d) be a consistent pair. Then

v
Aπ

i
,y

π,d,v

Bπ
i−1

(S) = v(S ∪ T π,d
i )− v(T π,d

i ) for all i ∈ {1, . . . , n} and S ∈ O(Aπ
i ,�).

Proof. Let y = yπ,d,v, and, for any i ∈ {1, . . . , n}, Ai = Aπ
i , Ti = T π,d

i , and vi = vAi,yBπ
i−1

.

We proceed by induction on i. If i = 1, then Ai = N, Ti = ∅, and vi = v so that the
proof is finished. Assume that the theorem is correct for i = k−1 and some k = 2, . . . , n.
Now, if i = k, we distinguish two cases:

1. di−1 = 1: Then Ti = Ti−1 so that, by the inductive hypothesis,

yπ(i−1) = vi−1(Ai−1)− vi−1(Ai) = v(Ai−1 ∪ Ti)− v(Ai ∪ Ti)

which in turn implies, using (4) and the inductive hypothesis again,

vi(Ai) = vi−1(Ai−1)− yπ(i−1) = v(Ai ∪ Ti)− v(Ti).

11



Let S ∈ O(Ai,�) \ {Ai, ∅}. Two subcases may occur: If S ∪ {π(i − 1)} /∈ O(Ai−1,�),
then, by definition of the reduced game, vi(S) = vi−1(S) = v(S ∪ Ti)− v(Ti), where the
last equation results from the inductive hypothesis because Ti = Ti−1. If S ∪{π(i−1)} ∈
O(Ai−1,�), then vi(S) = max{vi−1(S), vi−1(S ∪ {π(i− 1)})− yπ(i−1)}. By the inductive
hypothesis, vi−1(S) = v(S ∪ Ti)− v(Ti) and

vi−1(S ∪ {π(i− 1)})− yπ(i−1) = v(S ∪ {π(i− 1)}∪ Ti) + v(Ai ∪ Ti)− v(Ti)− v(Ai−1 ∪ Ti).

By supermodularity,

v(S ∪ {π(i− 1)} ∪ Ti) + v(Ai ∪ Ti) 6 v(S ∪ Ti) + v(Ai−1 ∪ Ti)

hence we get vi(S) = vi−1(S), so that the proof is finished in this case.
2. di−1 = −1: Then Ti = Ti−1 ∪ {π(i− 1)} so that S ∪ {π(i− 1)} ∪ Ti−1 = S ∪ Ti for

all S ∈ O(Ai,�). Hence, proceeding as in Case 1, we find that

yπ(i−1) = vi−1({π(i− 1)}) = v(Ti)− v(Ti−1) and
vi(Ai) = vi−1(Ai−1)− yπ(i−1) = v(Ai ∪ Ti)− v(Ti).

Now, let S ∈ O(Ai,�) \ {Ai, ∅}. As π(i − 1) is minimal in (Ai−1,�), S ∪ {π(i − 1)} ∈
O(Ai−1,�) so that

vi(S) = max{vi−1(S), vi−1(S ∪ {π(i− 1)})− yπ(i−1)}
= max{v(S ∪ Ti−1)− v(Ti−1), v(S ∪ Ti)− v(Ti)} = v(S ∪ Ti)− v(Ti),

where the second equation follows from the inductive hypothesis and the last equation
follows from supermodularity.

The foregoing theorem shows that all the reduced games (Aπ
i ,�, v

Aπ
i ,y

π,d,v

Bπ
i−1

) of a su-

permodular game (N,�, v) are themselves supermodular, hence balanced. It follows by
Theorem 3 that y = yπ,d,v = xπ,d,v if (N,�, v) is supermodular. Therefore, by Theorem
1, there must be a total order π′ which is a linear extension of O(N,�, v) such that y
coincides with the associated marginal vector, i.e., y = mπ′,v. We now define such an
order π′ that we call induced order (of the consistent pair (π, d)), denoted πd. The order
πd first orders the players π(i) with di = −1 according to the order π and afterwards
orders the players π(j) with dj = 1 according to the reverse order of π.1 Hence Bπd

k is the
set of the k first players π(i) with di = −1 if there are at least k players of this type, and
otherwise Bπd

k consists of all players i with di = −1 and the last players π(j) with dj = 1

that are needed to get k players in total. Therefore, Bπd

0 , . . . , Bπd

n is a maximal chain in
O(N,�) and Theorem 4 implies the following result (see Figure 2 for an illustration of
the above definitions).

Corollary 1. Let (N,�, v) be supermodular, let (π, d) be a consistent pair, and let πd

be the total order induced by (π, d). Then πd is a linear extension of O(N,�, v) and
mπd,v = yπ,d,v = xπ,d,v = xπd,(−1,...,−1),v.

1Formally, πd is defined as follows. Let α(d) = |{i ∈ {1, . . . , n} : di = −1}| and i ∈ {1, . . . , n}. For
i 6 α(d) there exists a unique j1 ∈ {1, . . . , n} such that dj1 = −1 and |{j ∈ {1, . . . , j1} : dj = −1}| = i.
Define πd(i) = π(j1). If i > α(d), then there exists a unique j2 ∈ {1, . . . , n} such that dj2 = 1 and
|{j ∈ {j2, . . . , n} : dj = 1}| = i− α(d). In this case put πd(i) = j2.
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1

2

3 4

5

Figure 2: A hierarchy with 5 players. Consider π = 13524 and d = (−1,−1, 1, 1,−1).
Then πd = 13452, and the maximal chain Bπd

0 , . . . , Bπd

n is ∅, 1, 13, 134, 1345, N .

Proof. By Theorem 4,

yπ,d,v
π(i) =

{

v(T π,d
i ∪ {π(i)})− v(T π,d

i ) , if di = −1,

v(Aπ
i ∪ T π,d

i )− v(Aπ
i+1 ∪ T π,d

i ) , if di = 1.
(11)

A careful inspection of the definition of πd and of (11) shows that mπd,v = yπ,d,v.

Hence, for supermodular games, already those consistent pairs (π̃, d̃) that satisfy d̃i =
−1 for all i = 1, . . . , n define all the marginal vectors.

4.4 The case of connected hierarchies

By Lemma 3.2 of Grabisch and Sudhölter (2012), any game that has a connected hier-
archy is balanced. Hence, part (c) of Lemma 1 (i) is vacuously satisfied whenever also
(N \ {i},�) is connected so that we obtain for any connected poset (N,�) with |N | =
n > 2:

(i) If i is minimal in (N,�) and (N \ {i},�) is connected, then

min{xi : x ∈ C(N,�, v)} = v({i}) (12)

(ii) If i is maximal in (N,�) and (N \ {i},�) is connected, then

max{xi : x ∈ C(N,�, v)} = v(N)− v(N \ {i}). (13)

This motivates the following definition. An order π on a connected hierarchy (N,�) is
simple if for every i = 2, . . . , n− 1, (Aπ

i ,�) is connected (Note that a simple order may
not be admissible: take, e.g., (N,�) given by 1 ≺· 2 ≺· 3, 1 ≺· 4 ≺· 3; then 2143 is simple
but not admissible).

Thus, if (π, d) is consistent and (Aπ
i ,�) remains connected for all i = 1, . . . , n, the

coordinates of x := xπ,d,v are given by

xπ(i) =

{

v′({π(i)}) , if di = −1,
v′(Aπ

i )− v′(Aπ
i+1) , if di = 1,

(14)

where v′ = vAπ
i ,xBπ

i−1
. Therefore, we have xπ,d,v = yπ,d,v. We have shown:

Theorem 5. Let (N,�, v) be a game with (N,�) a connected hierarchy. Then for any
consistent pair (π, d) where π is a simple order, the induced vector yπ,d,v is the min-max
vertex xπ,d,v.
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It is well known from graph theory that for any connected graph, there exists a node
such that its removal does not disconnect the graph (see, e.g., (Diestel, 2005, Prop.
1.4.1)). It follows that for every (N,�), a simple order always exists. This result can be
used to show the following lemma.

Lemma 2. Any poset (N,�) has a total order that is simple and admissible.

Proof. We may assume that (N,�) is connected and that |N | = n > 2. It suffices to
show that there exists i ∈ N such that (a) i is minimal or maximal and (b) (N \ {i},�)
is connected. We proceed by induction on n. If n = 2, then each element of N has
the desired properties. If our statement is true for n < t for some t > 3, and if, now,
n = t, then select any vertex ℓ ∈ N such that with S = N \ {ℓ}, (S,�) is connected.
(As mentioned, such a vertex always exists.) We may assume that ℓ is neither maximal
nor minimal. By the inductive hypothesis there exists a minimal or maximal element k
of (S,�) such that (S \ {k},�) is connected. If k ≺ ℓ, then k is minimal in (N,�), and
if ℓ ≺ k, then k must be maximal in (N,�). If neither k ≺ ℓ nor ℓ ≺ k, then k remains
maximal or minimal in (N,�). Hence, k is maximal or minimal in (N,�) in any case so
that we may conclude that k has the desired properties.

4.5 The general case

We consider here that (N,�) is not necessarily connected, nor that the game under
consideration is supermodular.

Let (N,�, v) be a game with precedence constraints (not necessarily balanced). Let
R(N,�) = R be the partition of N into connected components, and consider the interme-
diate game (R, vR) as defined in Section 2. For y ∈ X(R, vR) denote

Cy(N,�, v) = {x ∈ X(N,�, v) : x(S) > v(S) ∀S ∈ F0, x(R) = yR ∀R ∈ R},

where F0 is the set of downsets that are not unions of connected components. We say
that Cy(N,�, v) is the core of (N,�, v) w.r.t. y.

Remark 2. Let (R, vR) be the intermediate game of the game (N,�, v) with precedence
constraints and y ∈ X(R, vR).

(i) If (N,�) is connected, then Cy(N,�, v) = C(N,�, v).

(ii) By Proposition 2.4 of Grabisch and Sudhölter (2016), Cy(N,�, v) 6= ∅.

(iii) Define the auxiliary game (N,�, vy) with precedence constraints by

vy(S) =

{

y(T ) , if S =
⋃

T for some T ⊆ R,
v(S) , if S ∈ F0.

Then C(N,�, vy) = Cy(N,�, v). Indeed, if x ∈ C(N,�, vy), then x(N) = vy(R) =
v(N) and x(R) > yR for all R ∈ R so that x(R) = yR and, hence, x ∈ Cy(N,�, v).
Moreover, it is straightforward to verify the other inclusion.

We now generalize (14) to allow computing xπ,d,vy under certain additional assump-
tions by first proving a statement that follows from (i) of Lemma 1 for the auxiliary
game. To this end we say that xS ∈ RS is y-core extendable if it is core extendable w.r.t.
(N,�, vy).
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Lemma 3. Let (N,�, v) be a game with precedence constraints and with intermediate
game (R, vR), y ∈ X(R, vR), and i ∈ R ∈ R with |R| > 2 such that (R \ {i},�) is
connected. Then xi ∈ R{i} is y-core extendable if and only if

(i) xi > maxS⊆R\{R}

(

v({i} ∪
⋃

S)−y(S)
)

=: aN,�,v
i,y if i is a minimal element of (R,�)

and

(ii) xi 6 minS⊆R\{R}

(

y(S ∪ {R}) − v((R \ {i}) ∪
⋃

S)
)

=: aN,�,v
i,y if i is a maximal

element of (R,�).

Proof. Let xi be y-core extendable. Then there exists x ∈ Cy(N,�, v). Let S ⊆ R \
{R}. Then, if i is minimal in (R,�), xi + y(S) = x ({i} ∪

⋃

S) > v ({i} ∪
⋃

S) so that
(i) must be satisfied. Now, if i is maximal, y(S ∪ {R}) − xi = x ((R \ {i}) ∪

⋃

S) >

v ((R \ {i}) ∪
⋃

S) which implies (ii).
To show the if-part let xi satisfy (i) and (ii). As (R \ {i},�) is connected, R′ :=

RN\{i},� = (R \ {R}) ∪ {R \ {i}}. Let y′ ∈ RR′
be given by

y′S =

{

yS , if S ∈ R \ {R},
yR − xi , if S = R \ {i}.

Let v1 = (vy)N\{i},xi
and v2 =

(

vN\{i},xi

)y′

. In view of parts (ii) and (iii) of Remark 2 and of
part (i) of Lemma 1 it suffices to prove that v1(T ) = v2(T ) for all T ∈ F ′ = O(N \{i},�).
As v1(∅) = 0 = v2(∅), we may assume that T 6= ∅. If T is not a union of connected
components of (N \ {i},�), then T ∪ {i} is not a union of connected components of
(N,�) because |R| 6= 1. Hence, v1(T ) = v2(T ) in this case. Hence, we assume that
T =

⋃

S ′ for some S ′ ⊆ R′. If T ∪ {i} /∈ F , then v1(T ) = y(S ′) = y′(S ′) = v2(T ). Hence,
we may assume that T ∪{i} ∈ F . If R \ {i} /∈ S ′, then T ∪{i} is not a union of elements
of R so that i is a minimal element. Therefore, v(T ∪ {i}) − xi 6 y(S ′) by (i) so that
v1(T ) = y(S ′) = y′(S ′) = v2(T ) in this case. Therefore we consider the case R \ {i} ∈ S ′

now. If T /∈ F , then v1(T ) = y′(S ′) = v2(T ) by definition of the reduced game. If T ∈ F ,
then i is maximal. By (ii),

v1(T ) = y((S ′ \ {R \ {i}}) ∪ {R})− xi = y(S ′ \ {R \ {i}}) + y′R\{i} = y′(S ′) = v2(T ).

Theorem 6. If y is a vertex of C(R, vR) then every min-max vertex of Cy(N,�, v) is a
vertex of C(N,�, v).

Proof. Observe first that if y ∈ C(R, vR), then Cy(N,�, v) ⊆ C(N,�, v). Indeed, take
any x ∈ C(N,�, v). For any S ∈ F0, x(S) > v(S) by definition, and if S =

⋃

T for some
T ⊆ R, x(

⋃

T ) =
∑

R∈T yR > vR(T ) = v(
⋃

T ).
Suppose in addition that y is a vertex of C(R, vR), and consider a min-max vertex x

of Cy(N,�, v). Moreover, let x′, x′′ ∈ C(N,�, v) such that x = x′+x′′

2
. For any R ∈ R,

yR = x(R) =
x′(R) + x′′(R)

2
.

Putting x′(R) = y′R and x′′(R) = y′′R, we get yR =
y′
R
+y′′

R

2
. This being valid for any R ∈ R,

it follows that x′, x′′ ∈ C(N,�, v) implies that y′, y′′ ∈ C(R, vR) so that y = y′ = y′′ by
the extremality of y. Hence x′(R) = x′′(R) = x(R) for every R ∈ R so that x′, x′′ ∈
C(N,�, vy). As x is a vertex of C(N,�, vy), Theorem 2 implies x = x′ = x′′.

15



Combining Lemma 3 and Theorem 6, we can now give an explicit expression of xπ,d,v.
Specifically, for a consistent pair (π, d) with π being simple2 and admissible, the min-max
vertex is given by, assuming π(i) ∈ R ∈ R,

xπ,d,v

π(i) =







maxS⊆R\{R}

(

v
Aπ

i ,x
π,d,v

{π(1),...,π(i−1)}

(

{π(i)} ∪
⋃

S
)

− y′(S)
)

, if di = −1

minS⊆R\{R}

(

y′(S ∪ {R})− v
Aπ

i ,x
π,d,v

{π(1),...,π(i−1)}

(

(Aπ
i+1 ∩ R) ∪

⋃

S
))

, if di = 1,

(15)
for i = 1, . . . , n, where y′R = yR −

∑i−1
j=1 1R(π(j))x

π,d,v

π(j) for all R ∈ R, and y is a vertex of

C(R, vR).

5 Equivalent consistent pairs of permutations and

decisions

We begin by a simple observation. If (π, d) is a consistent pair w.r.t. (N,�) and d′ differs
from d only inasmuch as d′n = −dn, then (π, d′) is also consistent, and xπ,d,v = xπ,d′,v

for any game (N,�, v). Indeed, π(n) is the unique player of Aπ
n so that π(n) is both

maximal and minimal in (Aπ
n,�). Moreover, xπ,d,v

N\{π(n)} = xπ,d′,v

N\{π(n)} by definition so that

xπ,d,v

π(n) = xπ,d′,v

π(n) by Pareto optimality of the core. For this reason, we call this operation an
irrelevant switch.

We say that two consistent pairs (π, d) and (π′, d′) are equivalent if, for any balanced
game (N,�, v), the corresponding min-max vertices coincide, i.e., xπ,d,v = xπ′,d′,v. We
show in this section that equivalent consistent pairs necessarily arise from irrelevant
switches and a sequence of “neighbor” pairs.

Let (π, d) and (π′, d′) be consistent pairs w.r.t. (N,�). We say that (π, d) and (π′, d′)
are neighbors if there exists k ∈ {1, . . . , n− 1} such that

(i) π(i) = π′(i) and di = d′i for all i ∈ {1, . . . , n} \ {k, k + 1},

(ii) π(k) = π′(k + 1) and dk = d′k+1 = −dk+1 = −d′k, and

(iii) (Aπ
k+2,�) is connected (where Aπ

n+1 = ∅ and ∅ is assumed to be connected).

Proposition 3. Let (N,�, v) ∈ Γ be balanced and (π, d) and (π′, d′) be consistent w.r.t.
(N,�). If (π, d) and (π′, d′) are neighbors, then xπ,d,v = xπ′,d′,v.

Proof. Let k ∈ {1, . . . , n − 1} such that π(i) = π′(i) for i 6= k, k + 1. We may assume
that dk = 1 (i.e., d′k+1 = −d′k = −dk+1 = 1). Denote x = xπ,d,v and x′ = xπ′,d′,v. Then
xBπ

k−1
= x′

Bπ′
k−1

because Bπ
k−1 = Bπ′

k−1. Let j = π(k) and ℓ = π(k + 1). Then by using (9)

xj = max{yj : y ∈ C(N,�, v), yBπ
k−1

= xBπ
k−1

},

xℓ = min{yℓ : y ∈ C(N,� v), yBπ
k−1

= xBπ
k−1

, yj = xj},

x′
j = max{yj : y ∈ C(N,� v), yBπ

k−1
= xBπ

k−1
, yℓ = x′

ℓ}, and

x′
ℓ = min{yℓ : y ∈ C(N,�, v), yBπ

k−1
= xBπ

k−1
}.

2In the sense that no connected component gets disconnected.
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Therefore, xj > x′
j and xℓ > x′

ℓ. Moreover,

xj = max{yj : y ∈ C(N,�, v), yBπ
k−1

= xBπ
k−1

, yℓ = xℓ} and

x′
ℓ = min{yℓ : y ∈ C(N,�, v), yBπ

k−1
= xBπ

k−1
, yj = x′

j}

so that xj = x′
j if and only if xℓ = x′

ℓ. Hence, if (xj , x
′
ℓ) ∈ R{j,ℓ} is core extendable

w.r.t. (Aπ
k , vAπ

k
,xBπ

k−1
), then x′

j > xj , i.e., x
′
j = xj so that it suffices to show that (xj , x

′
ℓ)

is core extendable. To this end we assume that k < n− 1 because otherwise xj = x′
j and

xℓ = x′
ℓ by Pareto optimality. Let w = vAπ

k
,xBπ

k−1
, u = v

Aπ′
k+1,xBπ′

k

, and u′ = v
Aπ′

k+1,x
′

Bπ′
k

. In

view of Lemma 1 (i) and (iii) with S = {ℓ} and T = {j}, and since we know that x′
ℓ

is core extendable w.r.t. w, it suffices to show that (a) (Aπ
k+2, u

′
Aπ

k+2,xj
) is balanced, (b)

xj 6 u′(Aπ′

k+1) − u′(Aπ′

k+1 \ {j}), and (c) if j is minimal in (Aπ′

k+1,�), then xj > u′({j}).
Now, (a) is trivially true by our assumption that (Aπ

k+2,�) is connected. Moreover,
if j is minimal in (Aπ′

k+1,�), since x′
j is core extendable w.r.t. u′, then by Lemma 1,

x′
j > u′({j}) so that (c) follows from xj > x′

j . In order to show (b), from u′ = (w)
Aπ′

k+1,x
′
ℓ

and u = (w)
Aπ′

k+1,xℓ
observe that

u′(Aπ′

k+1)− u′(Aπ′

k+1 \ {j}) = w(Aπ
k)− x′

ℓ −max{w(Aπ
k+2), w(A

π
k+1)− x′

ℓ} and (16)

u(Aπ′

k+1)− u(Aπ′

k+1 \ {j}) = w(Aπ
k)− xℓ −max{w(Aπ

k+2), w(A
π
k+1)− xℓ}. (17)

Since xj is core extendable w.r.t. u, by Lemma 1, xj 6 u(Aπ′

k+1)− u(Aπ′

k+1 \ {j}). Hence,
by (16) and (17), xj 6 u′(Aπ′

k+1)−u′(Aπ′

k+1 \ {j}) as well so that (b) has been verified.

We now show that (iii) in the definition of neighbors is crucial for Proposition 3.

Lemma 4. Let (π, d) and (π′, d′) be consistent pairs w.r.t. the poset (N,�) that satisfy
(i) and (ii) of the definition of neighbors for some k ∈ {1, . . . , n− 1} such that (Aπ

k+2,�)
is not connected. If dk = 1 = −d′k, then there exists a balanced (N,�, v) ∈ Γ such that

xπ,d,v

π(k) > xπ′,d′,v

π(k) and xπ,d,v

π(k+1) > xπ′,d′,v

π(k+1).

Proof. Note that k 6 n− 2, and denote j = π(k) and ℓ = π(k + 1). Choose two distinct
connected components P and Q of (Aπ

k+2,�) and define, for any S ∈ O(N,�),

v(S) =















1, if j /∈ S ∋ ℓ and P \ S 6= ∅ 6= Q \ S,
2, if j /∈ S ∋ ℓ and (P ⊆ S or Q ⊆ S),
5, if j, ℓ ∈ S ⊇ P ∪Q,
0, otherwise.

Let z ∈ RN be defined by zj = 3, zℓ = 2, and zi = 0 for all i ∈ N \ {j, ℓ}. Then it
is straightforward to check that z ∈ C(N,�, v). Let x = xπ,d,v and x′ = xπ′,d′,v. By
Lemma 1 (i), xi = x′

i = zi for all i ∈ Bπ
k−1. Let v′ = vAπ

k
,xBπ

k−1
. We claim that xj = 3

and xℓ = 2. As j is maximal in Aπ
k , A

π
k+1 ∈ O(Aπ

k ,�). However, v′(Aπ
k+1) = 2 and

v′(Aπ
k) = 5, and by RGP, xAπ

k
∈ C(Aπ

k ,�, v′) so that x(Aπ
k+1) > 2, implying xj 6 3. Now,

xj = 3 since z ∈ C(N,�, v). Moreover, v′(Aπ
k+1 \ P ) = v′(P ∪ {ℓ}) = 2, so that as xAπ

k
∈
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C(Aπ
k ,�, v′), x(P ), x(Aπ

k+2 \P ) > 2−xℓ. We conclude that 2 = x(N)−x(Bπ
k ) = x(Aπ

k+1)
= xℓ + x(P ) + x(Aπ

k+2 \ P ) > 4− xℓ, i.e., xℓ > 2. Therefore xℓ = 2. As

xπ(k) = max{yπ(k) : yAπ
k
∈ C(Aπ

k ,�, v′)},
xπ(k+1) = min{yπ(k+1) : yAπ

k
∈ C(Aπ

k ,�, v′), yπ(k) = xπ(k)},
x′
π(k+1) = min{yπ(k+1) : yAπ

k
∈ C(Aπ

k ,�, v′)}, and

x′
π(k) = max{yπ(k) : yAπ

k
∈ C(Aπ

k ,�, v′), yπ(k+1) = x′
π(k+1)},

we conclude that xπ(k) > x′
π(k) and xπ(k+1) > x′

π(k+1). Moreover, xπ(k) = x′
π(k) if and only

if xπ(k+1) = x′
π(k+1). Therefore, it suffices to find yAπ

k
∈ C(Aπ

k ,�, v′) such that yℓ < 2.

Put yℓ = 1, yj = 2, yi =
1
|P |

for i ∈ P , yi =
1
|Q|

for i ∈ Q, and yi = 0 for i ∈ Aπ
k+2 \ (P ∪Q)

and observe that yAπ
k
∈ C(Aπ

k ,�, v′).

Theorem 7. Let (N,�) be a poset and (π, d) and (π′, d′) be consistent pairs. Then the
following statements are equivalent:

(i) The pairs (π, d) and (π′, d′) are equivalent.

(ii) There is a sequence (π1, d1), . . . , (πt, dt) of consistent pairs such that (π1, d1) =
(π, d), (πt, dt) = (π′, d′), and for any ℓ ∈ {1, . . . , t−1}, either (πℓ, dℓ) and (πℓ+1, dℓ+1)
are neighbors or they only differ by an irrelevant switch.

Proof. One direction follows from Proposition 3. For the other direction assume, on
the contrary, that (π, d) and (π′, d′) are not equivalent, but that xπ,d,v = xπ′,d′,v for
any balanced game (N,�, v). Let |N | = n be minimal under this condition. Then
(π(1), d1) 6= (π′(1), d′1) because otherwise consider the pairs (π̃, d̃) and (π̃′, d̃′) defined by
π̃(i) = π(i + 1), π̃′(i) = π′(i + 1), d̃i = di+1, and d̃′i = d′i+1 for all i ∈ {1, . . . , n − 1}
on (N \ {π(1)},�) and observe that these pairs are not equivalent but induce the same
vertices of the core for any balanced game (N \{π(1)},�, v) contradicting the minimality
assumption on n.

By Corollary 1, πd = π′d′ . We conclude that

π(1) 6= π′(1) and d1 6= d′1, (18)

say d′1 = 1 = −d1. We also assume that dn = 1. Let j = π′(1) and k = min{i ∈
{2, . . . , n} : di = 1} − 1. Again, as πd = π′d′, π(k + 1) = j. Let ℓ = π(k). If (Aπ

k+2,�)
is connected, then (π′′, d′′) is equivalent to (π, d) and we may replace (π, d) by (π′′, d′′).
Proceeding recursively, we decrease k in each step until we finally obtain that (Aπ

k+2,�)
is disconnected. Indeed, if we reach k = 1 and Aπ

k+2 were still connected, then (π′′, d′′) is
equivalent to (π, d) and satisfies π′′(1) = π′(1) which is impossible by (18). By Lemma 4

there exists a balanced (N,�, v) ∈ G such that xπ′′,d′′,v
j > xπ,d,v

j . Now,

xπ′′,d′′,v
j = max{yj : y ∈ C(N,�, v), y

Bπ′′
k−1

= xπ′′,d′′,v

Bπ′′
k−1

}

and xπ′,d′,v
j = max{yj : y ∈ C(N,�, v)}

so that xπ′,d′,v
j > xπ′′,d′′,v

j > xπ,d,v
j and the desired contradiction has been obtained.
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In view of Theorem 7, for any arbitrary balanced game we may not ignore any equiv-
alence class of consistent pairs in order to compute all min-max vertices of the core.
However, there might be more equivalence classes than possible vertices according to
Proposition 2. E.g., in the traditional case, i.e., if �= ∅ and |N | = n > 3, then there are
precisely 2n−3n! equivalence classes of consistent pairs. Indeed, if (π, d) and (π′, d′) are
neighbors, then the k where π and π′ differ first must satisfy that (Aπ

k+2,�) is connected,
hence k > n−2. Therefore, for any equivalent consistent pairs (π, d) and (π′, d′), we have
(π(i), di) = (π′(i), d′i) for all i = 1, . . . , n − 3. Moreover, it is straightforward to check
that for any consistent pair (π, d) there exists an equivalent consistent pair (π′, d′) such
that d′n−2 = d′n−1 = d′n = −1. Hence, the 2n−3n! pairs (π, d), where π is an order and d
is a decision vector such that dn−2 = dn−1 = dn = −1, are representatives of all pairwise
distinct equivalence classes in the traditional case.

The following example shows that consistent pairs which are not equivalent may or
may not induce different min-max vertices.

Example 1. We consider n = 4 and the hierarchy shown below.

1

2 3

4

The consistent pairs (π, d) and (π′, d′) given by π = 1234, d = (−1,−1,−1,−1) and
π′ = 4321, d′ = (1, 1, 1, 1) are in different equivalence classes. However, the induced orders
πd = 1234 and π′d′ = 1234 are the same. Hence, if the game is strictly supermodular, they
induce the same vertex, namely m1234,v. Otherwise, the induced min-max vertices may
be different: take, e.g., the game (N,�, v) defined by v(12) = 1 and v(S) = 0 otherwise.
Then it can be checked that

xπ,d,v = (0, 1, 0,−1), xπ′,d′,v = (1, 0,−1, 0).

♦

Remark 3. It is easy to check that for every connected hierarchy with n = 3, each
equivalence class of consistent pairs contains some simple admissible order. This shows
that for computing all min-max vertices for balanced 3-person games with connected
hierarchies we can restrict to simple admissible orders. However, for n > 3, this property
fails to be true in general. Consider, e.g., the “N” example (Figure 1). Then

{(3214, (−1, 1, 1, 1)), (3214, (−1, 1, 1,−1)), (3241, (−1, 1,−1, 1)), (3241, (−1, 1,−1,−1))}

is an equivalence class which does not contain any simple order.

6 Examples and summary of the results

We begin by illustrating the computation of the min-max vertices when the hierarchy is
connected.
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Example 2. We consider n = 4 and the connected hierarchy (N,�) given in Figure 1
(the “N” example).

Let us consider a strictly supermodular game (N,�, v). Every order is admissible
and the simple orders are 1234, 1243, 1423, 1432, 4321, 4312, 4123 and 4132. The linear
extensions (which yield all extreme points of the core) are 1324, 1342, 3124, 3142, and
3412.

Taking order 1234 and using strict supermodularity, we compute the min-max vertex
x = xπ,v (the decision vector d is irrelevant here), which by Theorem 5, is equal to yπ,v

(note that by Pareto optimality, it is not necessary to compute the last coordinate).
Omitting braces and commas for denoting sets, we find:

x1 = v(1)

x2 = v234,x(234)− v234,x(34) = v(N)− v(1)−max(v(34), v(134)− v(1))

= v(N)− v(134)

x3 = v34,x(3) = max(v(3), v(13)− x1, v(123)− x1 − x2)

= max(v(3), v(13)− v(1), v(123)− v(N) + v(134)− v(1))

= v(13)− v(1).

This yields x = m1342,v, the marginal vector associated with the order 1342. Similarly,
we find:

x1243,v = x1234,v = m1342,v

x1423,v = x1432,v = x4123,v = x4132,v = m1324,v

x4321,v = x4312,v = m3124,v.

♦

The example illustrates Corollary 1 and Proposition 3 as well. Indeed, for π = 1234
we have d = (−1, 1,−1, 1) and the induced order πd is 1342. Moreover, all orders 1423,
1432, 4123 and 4132 are neighbors.

We now illustrate Theorem 3, showing that nonsimple admissible orders may produce
min-max vertices as well.

Example 3 (Example 2 ctd). With the “N” hierarchy let us take the game defined by

v(1) = 0, v(3) = −2, v(13) = v(34) = v(123) = 2, v(134) = 4, v(N) = 5.

which is neither super- nor submodular. The vertices of the core are (0, 0, 2, 3), (0, 1, 2, 2),
(2, 1, 0, 2) and (3, 0,−1, 3). It can be checked that they can be recovered by the following
orders (respectively): 1423, 1234, 2431 and 4321, among which the last but one is not
simple.

In addition, note that the marginal vectors are: (0, 1, 2, 2), (0, 0, 2, 3), (4, 1,−2, 2, ),
(4, 0,−2, 3) and (2, 1,−2, 4). Only the two first ones are vertices and two of the vertices
are not marginal vectors.

We have three equivalence classes of simple admissible orders, whose lexicographically
minimal members are 1234, 1423, and 4312. ♦
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Lastly, we illustrate the general case, using (15). We will see that in general not all
vertices can be recovered.

Example 4. Consider (N,�) depicted below.

1

2

3

4

We define the following game:

v(1) = v(3) = v(12) = v(34) = 0, v(13) = v(123) = 2, v(134) = 1, v(N) = 7,

which is neither super- nor submodular. The vertices of (N,�, v) are found to be
(0, 0, 2, 5), (2, 0, 0, 5), (2, 5, 0, 0), (0, 6, 2,−1) and (1, 6, 1,−1). The intermediate game
is convex, therefore the vertices of its core are the marginal vectors (0, 7), (7, 0).

We immediately observe that the vertices (2, 0, 0, 5) and (0, 6, 2,−1) cannot be found
by our procedure since thay do not satisfy x(R) = yR for R ∈ R. It can be checked that
the three other vertices (0, 0, 2, 5), (2, 5, 0, 0) and (1, 6, 1,−1) can be recovered by the
orders 1234 with y = (0, 7), 1234 with y = (7, 0), and 4321 with y = (7, 0), respectively.
We detail the second one, omitting superscripts.

x1 = max(v(1), v(134)− y34) = max(0, 1− 0) = 1

x2 = max(v234,x(2), v234,x(234)− y′34) = max(v(12)− x1, v(N)− x1 − y34) = max(−1, 6) = 6

x2 = min(y′12 − v234,x(∅), y
′(R)− v234,x(34))

= min(y12 − x1 − 0, v(N)− x1 −max(v(34), v(134)− x1)) = min(6, 6− 0) = 6

x3 = v34(3) = max(v(3), v(13)− x1, v(123)− x1 − x2) = max(0, 1,−5) = 1

x4 = −1 by efficiency.

We computed x2 in two different ways since 2 is both minimal and maximal in (234,�).
Note that anyhow x2 = y12−x1 = 6, so that the above calculation is in fact not necessary.
For 3 and 4, since 34 is connected we are back to the expression in (10). ♦

We summarize the situation:

(i) If (N,�) is connected, using simple admissible orders produce min-max vertices of
the core using (10). Unless n 6 3, not all min-max vertices can be found in general
(see Remark 3), other min-max vertices may be obtained by taking admissible
nonsimple orders and (10) (see Theorem 3).

(ii) The general case for (N,�) is addressed by Lemma 3 and Theorem 6. Min-max
vertices are computed via (15). Again, in general, not all of them can be found by
this formula.

(iii) The general case needs the knowledge of the vertices of the core of the intermediate
game vR, which is a classical game on the Boolean lattice 2R. Observe that for
classical games, only Theorems 2 and 3 can be used. Theorem 1 guarantees that
we get all vertices for supermodular games.

(iv) Theorem 7 shows that it is enough to compute the min-max vertices for one member
of each equivalence class of consistent pairs.
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7 Limits of the min-max approach

The following example shows that there exists a game v that possesses a vertex x of
its core with the following property: for any i ∈ N , there exist core elements y, z with
yi < xi < zi. It shows that it is not possible in general to find all vertices of the core by
taking arbitrary orders and maximizing or minimizing within the core the payoff of the
first player, then of the second, etc.

Example 5. Let N = {1, . . . , 5}, S = {{1, 2, 3}, {2, 3}, {2, 4}, {3, 4}, N}, and let (N,�)
be a poset that such that S ⊆ O(N,�), e.g., the classical case �= ∅ or the connected
poset given below.

2

1

3

5

4

Let (N,�, v) be a game that satisfies v(S) = 0 for all S ∈ S ∪ {∅} and v(T ) ≤ −3 for
all T ∈ O(N,�) \ (S ∪ {∅}). Moreover, let x = (0, 0, 0, 0, 0). Then x(S) = v(S) for all
S ∈ S so that x is a vertex of the core. Moreover,

z1 = (1,−1, 1, 1,−2)

z2 = (0, 1,−1, 1,−1)

z3 = (−2, 1, 1,−1, 1)

are core elements which satisfy

z31 < x1 < z11
z12 < x2 < z22
z23 < x3 < z13
z34 < x4 < z14
z15 < x5 < z35 ,

so that the desired property is satisfied. ♦

The following result shows that no such situation arises with less than 5 players.

Lemma 5. Let (N, v) be a balanced game on 2N . For n 6 4, no vertex x of the core has
the above property, i.e., αi < xi < βi with αi, βi core extendable.

Proof. The result can be easily checked geometrically for n = 2 and n = 3. Let us prove
it for n = 4.

Assume x is a core vertex satisfying the above property. Then x must satisfy

v({i}) < xi < v(N)− v(N \ {i}) ∀i ∈ N,
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which implies that x is determined by x(N) = v(N) and x(S) = v(S) for at least 3 subsets
of N among 12, 13, 14, 23, 24, 34. Let us select 12, 23 and 34. Then by x(N) = v(N), we
find x1 = v(N)−x2−x3−x4. Injecting in x(12) = v(12), we find −x3−x4 = v(12)−v(N),
which is not linearly independent with x(34) = v(34). Therefore, this selection does not
define a vertex. Up to permutations, it can be checked that the remaining possibilities
are of the type 12, 13, 23, and 12, 23, 24.

Consider type 12, 13, 23. Observe that this yields

x1 + x2 + x3 =
1

2

(

v(12) + v(13) + v(23)
)

,

and therefore x4 = v(N) − 1
2

(

v(12) + v(13) + v(23)
)

. Then no core element z can be
s.t. z4 > x4, for, in this case we would have z1 + z2 + z3 < 1

2

(

v(12) + v(13) + v(23)
)

,
invalidating one of the inequalities z(12) > v(12), z(13) > v(13) or z(23) > v(23).

Lastly, consider type 12, 23, 24. Let us solve the system x(12) = v(12), x(23) = v(23),
x(24) = v(24), x(N) = v(N). We obtain:

x1 =
1

2

(

v(N) + v(12)− v(23)− v(24)
)

x2 =
1

2

(

− v(N) + v(12) + v(23) + v(24)
)

x3 =
1

2

(

v(N)− v(12) + v(23)− v(24)
)

x4 =
1

2

(

v(N)− v(12)− v(23) + v(24)
)

.

Let us show that no core element z satisfies z2 < x2, which suffices to invalidate the
above property. Assume, on the contrary, that z is a core element satisfying z2 = x2 − ε
for some ε > 0. By x(12) = v(12) 6 z(12) we deduce z1 > x1 + ε. Similarly, we have
x(23) = v(23) 6 z(23) and x(24) = v(24) 6 z(24), implying z3 > x3 + ε and z4 > x4 + ε,
respectively. We conclude that z(N) >= x(N)+2ε > v(N), which is a contradiction.

From Lemma 5 and Example 5, we immediately deduce the following result.

Theorem 8. For any balanced game (N,�, v), every vertex of the core is a min-max
vertex if and only if n 6 4.

Proof. The “only if” part comes from Example 5. As for the “if” part, observe that
Lemma 5 remains valid for any hierarchy (N,�), because the only difference is that some
of the subsets 12, 13, 14, 23, 24, 34 may be unfeasible, thus limiting the choice of 3
subsets to satisfy equality.

Now, take any vertex x of the core of a balanced game (N,�, v). For n 6 4, we know
by Lemma 5 that at least one of the coordinates is equal to the minimum or maximum
over the core, say x1. Then, since xN\{1} is a vertex of the core of the reduced game
vN\{1},x1

, it follows that it has also a coordinate which is the minimum or maximum over
the core. Finally, x is a min-max vertex.
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8 Related literature

The basic idea of min-max vertices as well as the form of the induced vector (10) have their
roots in the past literature, although limited to the classical case F = 2N . Perhaps the
first occurrence of the idea of systematically taking the minimum or maximum over single
coordinates of core elements goes back to the paper of Derks and Kuipers (2002), while
the induced vector yπ,d,v (10) in the particular case where π(i) is always considered as a
maximal element is due to Núñez and Rafels (1998). In the latter reference, it is proved
that if the game (N, v) is almost convex, i.e., it satisfies the supermodularity inequality for
all S, T such that S ∪ T 6= N , then all vertices of the core are induced vectors yπ,d,v with
d = (1, 1, . . . , 1). In Núñez and Rafels (2003), it is shown that the class of assignment
games, although in general not almost convex, satisfies also the property that all vertices
of the core are induced vectors. Later, Izquierdo et al. (2007) give a very simple way
of computing these vertices for assignment games, just by using the assignment matrix.
Another class of games was proved to satisfy the same property, namely, minimal cost
spanning tree problems (Trudeau and Vidal-Puga, 2015).

It seems that the min-max allocation xπ,d,v under the form (9), limited to the case F =
2N and d = (1, 1, . . . , 1), has been first proposed by Tijs (2005) –see also later publications
of Funaki et al. (2007); Tijs et al. (2011)–, under the name of leximal (later called lexinal),
in order to define the Alexia value, and it was already remarked that these vectors are
indeed vertices of the core (the convex hull of all such vectors is called the lexicore, and
the barycenter of it is precisely the Alexia value). Based on the work of Tijs et al.,
a systematic study of lexicographic allocations is done in Núñez and Solymosi (2014).
There, the so-called lemacols and lemicols are our min-max vertices with d = (1, . . . , 1)
and d = (−1, . . . ,−1), respectively. Also, the lemiral is introduced, which corresponds to
the lemacol taken over the unbounded core (without the constraint x(N) = v(N)). It is
proved there that a marginal vector is in the core if and only if it equals the corresponding
lemiral, and a lemiral is in the core if and only if it equals the corresponding lemicol.

To the best of our knowledge, there is no publication on the vertices of the core
considering games on distributive lattices (except, of course, the supermodular case), nor
on min-max vertices considering an arbitrary combination of minimum and maximum
over coordinates using a decision vector d.
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