Document embeddings for Arabic Sentiment Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Document embeddings for Arabic Sentiment Analysis

Résumé

Research and industry are more and more focusing in finding automatically the polarity of an opinion regarding a specific subject or entity. Paragraph vector has been recently proposed to learn embeddings which are leveraged for English sentiment analysis. This paper focuses on Arabic sentiment analysis and investigates the use of paragraph vector within a machine learning techniques to determine the polarity of a given text. We tested some preprocessing method, and we show that light stemming enhance the performance of classification.
Fichier principal
Vignette du fichier
LPKM2017_paper_6.pdf (119.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02042060 , version 1 (20-02-2019)

Identifiants

  • HAL Id : hal-02042060 , version 1

Citer

Amira Barhoumi, Yannick Estève, Chafik Aloulou, Lamia Belguith. Document embeddings for Arabic Sentiment Analysis. Conference on Language Processing and Knowledge Management, LPKM 2017, Sep 2017, Sfax, Tunisia. ⟨hal-02042060⟩
300 Consultations
301 Téléchargements

Partager

More