Acoustic characterisation of liquid foams with an impedance tube - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2013

Acoustic characterisation of liquid foams with an impedance tube

Résumé

Acoustic measurements provide convenient non-invasive means for the characterisation of ma- terials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective "acoustic" density, over the 0.5-6 kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and "home-made" foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independant of the bubble size distribution and is very well described by Wood's law. This implies that the impedance technique may be a convenient way to measure in-situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico- chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.
Fichier principal
Vignette du fichier
PierreEPJE_Revised.pdf (1.01 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02008658 , version 1 (22-04-2013)
hal-02008658 , version 2 (12-09-2013)
hal-02008658 , version 3 (11-04-2023)

Identifiants

  • HAL Id : hal-02008658 , version 2

Citer

Juliette Pierre, Reine-Marie Guillermic, Florence Elias, Wiebke Drenckhan, Valentin Leroy. Acoustic characterisation of liquid foams with an impedance tube. 2013. ⟨hal-02008658v2⟩
208 Consultations
896 Téléchargements

Partager

Gmail Facebook X LinkedIn More