Linear-scaling source-sink algorithm for simulating time-resolved quantum transport and superconductivity - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review B: Condensed Matter and Materials Physics (1998-2015) Année : 2016

Linear-scaling source-sink algorithm for simulating time-resolved quantum transport and superconductivity

Résumé

We report on a "source-sink" algorithm which allows one to calculate time-resolved physical quantities from a general nanoelectronic quantum system (described by an arbitrary time-dependent quadratic Hamiltonian) connected to infinite electrodes. Although mathematically equivalent to the non equilibrium Green's function formalism, the approach is based on the scattering wave functions of the system. It amounts to solving a set of generalized Schrödinger equations which include an additional "source" term (coming from the time dependent perturbation) and an absorbing "sink" term (the electrodes). The algorithm execution time scales linearly with both system size and simulation time allowing one to simulate large systems (currently around 10$^6$ degrees of freedom) and/or large times (currently around 10$^5$ times the smallest time scale of the system). As an application we calculate the current-voltage characteristics of a Josephson junction for both short and long junctions, and recover the multiple Andreev reflexion (MAR) physics. We also discuss two intrinsically time-dependent situations: the relaxation time of a Josephson junction after a quench of the voltage bias, and the propagation of voltage pulses through a Josephson junction. In the case of a ballistic, long Josephson junction, we predict that a fast voltage pulse creates an oscillatory current whose frequency is controlled by the Thouless energy of the normal part. A similar effect is found for short junctions; a voltage pulse produces an oscillating current which, in the absence of electromagnetic environment, does not relax.
Fichier principal
Vignette du fichier
Wainj.pdf (1.92 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02007813 , version 1 (29-04-2019)

Identifiants

Citer

Joseph Weston, Xavier Waintal. Linear-scaling source-sink algorithm for simulating time-resolved quantum transport and superconductivity. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 93, pp.134506. ⟨10.1103/PhysRevB.93.134506⟩. ⟨hal-02007813⟩
60 Consultations
40 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More