Tangent bundles of hyperbolic spaces and proper affine actions on $L^p$ spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Tangent bundles of hyperbolic spaces and proper affine actions on $L^p$ spaces

Résumé

We define the notion of a negatively curved tangent bundle of a metric measured space. We prove that, when a group $G$ acts on a metric measured space $X$ with a negatively curved tangent bundle, then $G$ acts on some $L^p$ space, and that this action is proper under suitable assumptions. We then check that this result applies to the case when $X$ is a CAT(-1) space or a quasi-tree.

Dates et versions

hal-02006189 , version 1 (04-02-2019)

Identifiants

Citer

Indira Chatterji, François Dahmani, Thomas Haettel, Jean Lecureux. Tangent bundles of hyperbolic spaces and proper affine actions on $L^p$ spaces. 2019. ⟨hal-02006189⟩
88 Consultations
0 Téléchargements

Altmetric

Partager

More