Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields

Résumé

This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schrödinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thir-ring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.
Fichier principal
Vignette du fichier
HS-magnetic-sharp.pdf (416.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02003872 , version 1 (01-02-2019)
hal-02003872 , version 2 (12-07-2019)

Identifiants

Citer

Denis Bonheure, Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields. 2019. ⟨hal-02003872v1⟩
187 Consultations
147 Téléchargements

Altmetric

Partager

More