Dual 0.02% chlorhexidine digluconate - 0.1% disodium EDTA loaded thermosensitive ocular gel for Acanthamoeba keratitis treatment
Résumé
Poor bioavailability and low residence time limit the efficiency of conventional biguanide-based eye drops against Acanthamoeba keratitis. The aim of this work was to formulate an original anti-amoebic thermoreversible ocular gel combining biguanide and metalloproteases inhibitor - chelating agent. Chlorhexidine digluconate (CHX)-ethylenediaminetetraacetic acid disodium salt (Na2EDTA) were compounded in poloxamer 407 saline solution. 0.02% CHX - 0.1% Na2EDTA loaded thermosensitive ocular gel exhibited appropriate pH (5.73 ± 0.06), iso-osmolality (314 ± 5 mOsm/kg), viscosity (ranged between 15 and 25 mPa.s) and thermal gelation (26.5 °C and 33 °C) properties. Bioadhesion of gel was successfully tested onto isolated bovine eyes as well as the assessment of CHX penetration into the cornea. Intracorneal CHX concentration was found greater than trophozoite minimum amoebicidal concentration and minimal cysticidal concentration after 15-min and 2-h ocular exposure, respectively, while any CHX permeation through the cornea was detected (<51 ng/cm2/h). Improvement of CHX ocular bioavailability was attributed to probable solubilization of tear film lipid layer by poloxamer. In vitro efficiency of CHX-Na2EDTA ocular gel was confirmed from the drastic reduction of trophozoite and cyst survival (to 25% and 2%, respectively), confirming the potential of the multicomponent pharmaceutical material strategy for the treatment of Acanthamoeba keratitis.