Compact finite difference schemes of arbitrary order for the Poisson equation in arbitrary dimensions - Archive ouverte HAL
Article Dans Une Revue BIT Numerical Mathematics Année : 2019

Compact finite difference schemes of arbitrary order for the Poisson equation in arbitrary dimensions

Erwan Deriaz

Résumé

A formulation of the Taylor expansion with symmetric polynomial algebra allows to compute the coefficients of compact finite difference schemes, which solve the Poisson equation at an arbitrary order of accuracy on a uniform Cartesian grid in arbitrary dimensions. This construction produces original high order schemes which respect the Discrete Maximum Principle: a tenth order scheme in dimension three and several sixth order schemes in arbitrary dimension. Numerical experiments validate the accuracy of these schemes.
Fichier principal
Vignette du fichier
ColzEng_1.pdf (287.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01998201 , version 1 (29-01-2019)

Identifiants

Citer

Erwan Deriaz. Compact finite difference schemes of arbitrary order for the Poisson equation in arbitrary dimensions. BIT Numerical Mathematics, 2019, ⟨10.1007/s10543-019-00772-5⟩. ⟨hal-01998201⟩

Relations

97 Consultations
1000 Téléchargements

Altmetric

Partager

More