A Tight Erdös-Pósa Function for Wheel Minors - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Discrete Mathematics Année : 2018

A Tight Erdös-Pósa Function for Wheel Minors

Résumé

Let $W_t$ denote the wheel on t+1 vertices. We prove that for every integer $t \geq 3$ there is a constant $c=c(t)$ such that for every integer $k \geq 1$ and every graph $G$, either $G$ has $k$ vertex-disjoint subgraphs each containing $W_t$ as a minor, or there is a subset $X$ of at most $c k \log k$ vertices such that $G-X$ has no $W_t$ minor. This is best possible, up to the value of $c$. We conjecture that the result remains true more generally if we replace $W_t$ with any fixed planar graph $H$.

Dates et versions

hal-01995696 , version 1 (27-01-2019)

Identifiants

Citer

Pierre Aboulker, Samuel Fiorini, Tony Huynh, Gwénaël Joret, Jean-Florent Raymond, et al.. A Tight Erdös-Pósa Function for Wheel Minors. SIAM Journal on Discrete Mathematics, 2018, 32 (3), pp.2302-2312. ⟨10.1137/17M1153169⟩. ⟨hal-01995696⟩
125 Consultations
0 Téléchargements

Altmetric

Partager

More