Betti numbers of binomial ideals - Archive ouverte HAL
Article Dans Une Revue Journal of Symbolic Computation Année : 2017

Betti numbers of binomial ideals

Résumé

Let us consider the family of binomial ideals , where J is lattice ideal and I is a square-free quadratic monomial ideal. We give a formula for calculating the Betti numbers of B. Moreover we bound the Green–Lazarsfeld invariant of a family of quadratic binomial ideals B using this formula. This result extends a previous result of Eisenbud et al. for square-free quadratic monomial ideals and extends completely Fröberg's theorem. We describe also a subfamily where we can calculate the Green–Lazarsfeld invariant of any ideal B and we also compute its first non-linear Betti number.

Dates et versions

hal-01993754 , version 1 (25-01-2019)

Identifiants

Citer

Hernán de Alba, Marcel Morales. Betti numbers of binomial ideals. Journal of Symbolic Computation, 2017, 80, pp.387-402. ⟨10.1016/j.jsc.2016.06.001⟩. ⟨hal-01993754⟩
36 Consultations
0 Téléchargements

Altmetric

Partager

More