A Study of the Length Function of Generalized Fractions of Modules - Archive ouverte HAL
Article Dans Une Revue Proceedings of the Edinburgh Mathematical Society Année : 2017

A Study of the Length Function of Generalized Fractions of Modules

Marcel Morales
  • Fonction : Auteur
  • PersonId : 855791
Pham Hung Quy
  • Fonction : Auteur

Résumé

Let be a Noetherian local ring and let M be a finitely generated R-module of dimension d. Let be a system of parameters of M and let be a d-tuple of positive integers. In this paper we study the length of generalized fractions M(1/(x 1, … , xd , 1)), which was introduced by Sharp and Hamieh. First, we study the growth of the functionThen we give an explicit calculation for the function in the case in which M admits a certain Macaulay extension. Most previous results on this topic are improved in a clearly understandable way.

Dates et versions

hal-01993745 , version 1 (25-01-2019)

Identifiants

Citer

Marcel Morales, Pham Hung Quy. A Study of the Length Function of Generalized Fractions of Modules. Proceedings of the Edinburgh Mathematical Society, 2017, 60 (03), pp.721-737. ⟨10.1017/s0013091516000237⟩. ⟨hal-01993745⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

More