Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes
Résumé
We consider the mean curvature flow of a closed hypersurface in the complex or quaternionic projective space. Under a suitable pinching assumption on the initial data, we prove apriori estimates on the principal curvatures which imply that the asymptotic profile near a singularity is either strictly convex or cylindrical. This result generalizes to a large class of symmetric ambient spaces the estimates obtained in the previous works on the mean curvature flow of hypersurfaces in Euclidean space and in the sphere.