Manifolds which admit maps with finitely many critical points into spheres of small dimensions - Archive ouverte HAL
Article Dans Une Revue Michigan Mathematical Journal Année : 2018

Manifolds which admit maps with finitely many critical points into spheres of small dimensions

Louis Funar
Cornel Pintea
  • Fonction : Auteur
  • PersonId : 847373

Résumé

We construct, for $m\geq 6$ and $2n\leq m$, closed manifolds $M^{m}$ with finite nonzero $\varphi(M^{m},S^{n}$), where $\varphi(M,N)$ denotes the minimum number of critical points of a smooth map $M\to N$. We also give some explicit families of examples for even $m\geq 6, n=3$, taking advantage of the Lie group structure on $S^3$. Moreover, there are infinitely many such examples with $\varphi(M^{m},S^{n})=1$. Eventually we compute the signature of the manifolds $M^{2n}$ occurring for even $n$.
Fichier principal
Vignette du fichier
1611.04344v2.pdf (327.95 Ko) Télécharger le fichier

Dates et versions

hal-01992044 , version 1 (15-10-2024)

Identifiants

Citer

Louis Funar, Cornel Pintea. Manifolds which admit maps with finitely many critical points into spheres of small dimensions. Michigan Mathematical Journal, 2018, 67 (3), pp.585-615. ⟨10.1307/mmj/1529460326⟩. ⟨hal-01992044⟩
27 Consultations
3 Téléchargements

Altmetric

Partager

More