Uniform hyperbolicity in nonflat billiards
Résumé
Uniform hyperbolicity is a strong chaotic property which holds, in particular, for Sinai billiards. In this paper, we consider the case of a nonflat billiard, that is, a Riemannian surface with boundary. Each trajectory follows the geodesic flow in the interior of the billiard, and bounces when it meets the boundary. We give a sufficient condition for a nonflat billiard to be uniformly hyperbolic. As a particular case, we obtain a new criterion to show that a closed surface has an Anosov geodesic flow.